
Security Properties of Domain Extenders for
Cryptographic Hash Functions

Elena Andreeva?, Bart Mennink?, and Bart Preneel?

Abstract— Cryptographic hash functions reduce inputs of arbitrary or very large length
to a short string of fixed length. All hash function designs start from a compression function
with fixed length inputs. The compression function itself is designed from scratch, or derived
from a block cipher or a permutation. The most common procedure to extend the domain of a
compression function in order to obtain a hash function is a simple linear iteration; however,
some variants use multiple iterations or a tree structure that allows for parallelism. This
paper presents a survey of 17 extenders in the literature. It considers the natural question
whether these preserve the security properties of the compression function, and more in
particular collision resistance, second preimage resistance, preimage resistance and the
pseudo-random oracle property.

Keywords— Hash Functions, Domain Extenders, Security Properties

1. Introduction

A hash function H : {0, 1}∗ → {0, 1}n is a function that maps arbitrarily long bit strings (or
at least very long strings) to digests of fixed length. They were introduced in cryptology
in the seminal paper of Diffie and Hellman on public-key cryptography [1] with as main
goal to make digital signatures more efficient and compact: the idea is that one would
sign a hash value of a message rather than a message itself. In his 1979 PhD thesis [2],
Merkle stated the three main security properties of a hash function: collision resistance,
second preimage resistance and preimage resistance. Cryptographic hash functions can be
used in a broad range of applications: to compute a short unique identifier of an input
string (for a digital signature as mentioned above), as one-way functions to hide an input
string (e.g. for passphrase protection), to commit to a string in a protocol, for entropy
extraction and for key derivation. Hash functions became a very popular tool during the
1990s because MD5 is 10 times faster than DES in software; moreover, it offered a larger
security level than DES, could deal with short and long inputs, and posed less problems
under export control laws. As a consequence, hash functions were even used to construct
MAC algorithms, stream ciphers and block ciphers.

In order to accommodate the processing of messages of arbitrary size, similarly to en-
cryption modes of operation, most hash functions are designed by reusing small and fixed
input length functions, known as compression functions, under some composition method.
A compression function F is a hash function whose message space M is of a fixed size.
We refer to the hash function under composition as a domain extender. The level of hash
function modularity can be further refined by building compression functions on top of
other building blocks, such as block ciphers and permutations. We will briefly elaborate on
this in Sect. 7.

Manuscript received October 31, 2010; accepted November 8, 2010.
? Dept. Electrical Engineering, ESAT/COSIC and IBBT, Katholieke Universiteit Leuven, Belgium,

{elena.andreeva, bart.mennink, bart.preneel}@esat.kuleuven.be

1

The most straightforward way to construct a domain extender is an iterative composi-
tion, that is constructed starting from a compression function F : {0, 1}n×{0, 1}b → {0, 1}n.
One first pads the input string, divides it into exactly ` b-bit blocks mi and computes it-
eratively hi ← F(hi−1‖mi) and returns h`. The first example of such a design is the Rabin
hash function [3], with F (x‖y) = DESy(x). Early designs did not specify the initial value
IV = h0. It is easy to see that this leads to trivial second preimage attacks and collision
attacks, even if F is second preimage resistant: it suffices to remove the first input block
and select IV = h1 for the second message. Similarly, finding preimages for the Rabin hash
function is trivial if the IV can be chosen by the attacker.

A natural question is to ask which conditions should be imposed on the compression
function and on the iteration mechanism for the hash function to be secure. For collision
resistance, this question was answered by Damg̊ard [4] and Merkle [5] in two independent
papers published at Crypto’89. They both showed that if one has if one fixes the IV and
has an unambiguous padding scheme with the message length appended at the end, it is
sufficient that F is collision resistant for H to be collision resistant. Lai and Massey called
this construction Merkle-Damg̊ard strengthening [6]; the strengthened iteration described
here is now commonly referred to as the Merkle-Damg̊ard design. Subsequently Lai and
Massey claimed that a hash function H is ideally second preimage resistant, that is, it
takes about 2n steps to find a second preimage for F, if and only if F is ideally second
preimage resistant; unfortunately, this result turns out to be incorrect. Obtaining ideal
(second) preimage resistance seems to be difficult.

Until 2005, MD5 and SHA-1 were the most widely used hash functions; this is surprising,
as collisions for the compression function of MD5 were already published in 1993 by den
Boer and Bosselaers [7] and in 1996 by Dobbertin [8]. While these attacks were serious
warnings, no one managed to find collisions for MD5 itself. However, in 2004 Wang et
al. [9, 10] achieved a breakthrough on both MD5 and SHA-1: they made several clever
improvements to differential cryptanalysis in order to find collisions for MD5 in 15 min-
utes on a PC and to speed up collision search for SHA-1 with a factor 2000. Around the
same time, several results were published that showed subtle flaws in the Merkle-Damg̊ard
design [11, 12, 13, 14]. These developments sparked a strong interest in the topic of hash
functions, resulting in more cryptanalysis, new research on definitions [15], novel domain
extenders and reduction proofs and new hash function constructions. As a consequence of
this hash function crisis, NIST decided to launch in 2007 a new hash function competition
to select by 2012 the new SHA-3 standard [16].

Six years after the beginning of the hash function crisis and three years after the start
of the SHA-3 competition, this paper presents a comparative overview of the 17 domain
extenders for hash functions that are currently known. In particular, we identify 8 security
properties for hash functions and analyze to which extent the known domain extenders
preserve these properties. Our work is relevant to the SHA-3 competition, but has also
broader implications on the theory of hash functions.

The remainder of this paper is organized as follows. In Sect. 2 we briefly summarize pre-
liminaries on hash function theory. The Merkle-Damg̊ard design and its security properties
are discussed in Sect. 3. The ideas behind variations of the Merkle-Damg̊ard design are
considered in Sect. 4. Section 5 contains a list of Merkle-Damg̊ard-based domain exten-
ders, together with their security properties, and in Sect. 6 we elaborate on other domain
extenders not directly related to the Merkle-Damg̊ard design. In Sect. 7, we refine the level
of modularity by considering hash function security properties with respect to idealization
of the underlying permutations or block ciphers. Then, in Sect. 8, the findings of this work
are applied to NIST’s SHA-3 hash function competition. The work is concluded in Sect. 9.

2. Definitions

Notation. For n ∈ N, where N is the set of natural numbers, let {0, 1}n denote the set of
bit strings of length n, {0, 1}n∗ the set of strings of length a multiple of n and {0, 1}∗ the set
of strings of arbitrary length. If x, y are strings, then x‖y is the concatenation of x and y.
If k, l ∈ N then 〈k〉l is the encoding of k as an l-bit string. |x| denotes the bit size of the

string x. If S is a set, then x
$← S denotes the uniform random selection of an element from

S. We let y ← A(x) and y
$← A(x) be the assignment to y of the output of a deterministic

and randomized algorithm A, respectively, when run on input x.

2.1. Design of Hash Functions

Keyless and keyed hash functions. A keyless hash function is defined as H : M → Y. The
message space M could be infinitely large, but we assume that there exists a λ ∈ N such
that {0, 1}λ ⊆M, and the target space Y is a finite set of bit strings. A keyed hash function
takes an additional key input parameter from the finite key space K and is formally defined
as H : K×M→ Y. The key is a public parameter that indexes the concrete hash instance
of the hash function family H. We note that many existing hash functions, including SHA-1
and SHA-2, are unkeyed.

2.2. Security of Hash Functions

Security notions. In [15], Rogaway and Shrimpton investigate seven security notions for
keyed hash functions as a natural extension of the three basic keyless notions of collision
resistance (Coll), preimage resistance (Pre), and second preimage resistance (Sec). Four
more notions emerge in the keyed setting and these are namely the always- and everywhere-
variants of second preimage and preimage resistance (aPre, aSec, ePre, and eSec). Intuitively,

collision resistance means that, for random key K
$← K it is hard for an adversary to find

different messages M,M ′ such that H(K,M) = H(K,M ′). Second preimage resistance means
that it, given a key K and first preimage M , it is hard for an adversary to find a message M ′

such that H(K,M) = H(K,M ′). In the original second preimage notion, both the key and
message are generated at random, but the adversary may be possible to arbitrarily choose
the key (always second preimage resistance) or the message (everywhere second preimage
resistance). The preimage resistance notion differs from the second preimage resistance in
the sense that the adversary learns a range point Y of H, rather than a preimage M . More
formally, we obtain the following definitions [15].

Definition 1. Let H : K ×M → Y be a hash function. The advantage of an adversary A

in breaking a keyed hash function H under security notion atk ∈ {Coll, Sec[λ], eSec, aSec[λ]}
is given by

Advatk
H (A) = Pr[Expatk : M 6= M ′ and H(K,M) = H(K,M ′)], (1)

and under security notion atk ∈ {Pre[λ], ePre, aPre[λ]} by

Advatk
H (A) = Pr[Expatk : H(K,M ′) = Y], (2)

where the experiments Expatk are given below.

atk Expatk

Coll K
$← K ; (M,M ′)

$← A(K)

Sec[λ] K
$← K ; M

$← {0, 1}λ ; M ′ $← A(K,M)

eSec (M, st)
$← A ; K

$← K ; M ′ $← A(K, st)

aSec[λ] (K, st)
$← A ; M

$← {0, 1}λ ; M ′ $← A(M, st)

Pre[λ] K
$← K ; M

$← {0, 1}λ ; Y ← H(K,M) ; M ′ $← A(K,Y)

ePre (Y, st)
$← A ; K

$← K ; M ′ $← A(K, st)

aPre[λ] (K, st)
$← A ; M

$← {0, 1}λ ; Y ← H(K,M) ; M ′ $← A(Y, st)

The hash function H is called (t, ε) atk-secure if no adversary running in time at most t
has advantage more than ε.

Remark. The notions of everywhere preimage and second preimage security become mean-
ingless in the keyless setting because the adversary wins trivially the security game. In-
deed, in the keyless setting, for everywhere (second) preimage resistance the probabilities
in (1) and (2) contain no randomness. The notions of always second preimage and preim-
age security on the other hand, merge with the standard second and preimage notion in
the keyless setting, respectively. Now, for the keyless setting, the definitions for preimage
and second preimage resistance (Def. 1) read as follows: the advantage of an adversary
A in breaking a keyless hash function H under security notion atk ∈ {Sec[λ],Pre[λ]} is
given by Advatk

H (A) = Pr[Expatk : M 6= M ′ and H(M) = H(M ′)] for atk = Sec[λ], and by
Advatk

H (A) = Pr[Expatk : H(M ′) = Y] for atk = Pre[λ], where the experiments Expatk are
given below.

atk Expatk

Sec[λ] M
$← {0, 1}λ ; M ′ $← A(M)

Pre[λ] M
$← {0, 1}λ ; Y ← H(M) ; M ′ $← A(Y)

Redefining the collision security in a similar fashion to the second preimage and preim-
age notions is however not formally correct in the keyless setting, as was pointed out by
Damg̊ard [4]. The problem with such a definition is that there always exist an efficient
attack algorithm that outputs a collision with probability 1; namely the algorithm that has
hard-coded in it one of the many collisions. This definitional problem was further inves-
tigated by Stinson [17] and Rogaway [18] who proposed a different theoretical treatment
by using security reductions. In Rogaway’s interpretation, one tackles the stated “human-
ignorance”problem by assuming the existence of explicitly given reduction(s). Such a treat-
ment says that for a collision secure hash function there is an explicitly given reduction of
the following form: given an adversary A against a scheme using internally H, there is a
corresponding, explicitly-specified adversary B, as efficient as A, for finding collisions in H.
This is a restatement of a standard reduction in cryptography meant to capture the idea
that if someone knows how to break the higher-level scheme then they know how to find
collisions in H, and if nobody can find collisions in H then nobody can break the scheme.
The notions defined above in both keyed and keyless setting are referred to as standard
security assumptions of the cryptographic strength of a hash function.

Indifferentiability. To prove the security of practical systems or schemes, e.g. digital sig-
natures, one frequently uses to the ideal (random oracle) security model where the hash
function is assumed to be an idealized function or a random oracle. A random oracle [19, 20]

is a public function which returns random outputs for each new input query. An adversary
that queries inputs to the random oracle function is said to have only “black-box” access
to the function.

While random oracles are monolithic objects, real world hash functions most commonly
are highly structured, for example by following some composition method, as is the case
with the Merkle-Damg̊ard design. To formalize a notion that compares the behavior of
such hash functions to that of a random oracle, one may decide to use the definition of
PRF (pseudorandom function) based on the indistinguishability concept. However, the PRF
notion does not always capture the overall behavior of such highly structured primitives. In
particular, most hash function designs employ a publicly computable compression function
which implies that anyone can compute the intermediate state values of the hash function
and reconstruct the hash result himself. This particular strength of a real world adversary is
not reflected in the notion of indistinguishability (it becomes meaningless in the absence of
randomness like a secret key) and thus resulted in the improved notion of indifferentiability
of a hash function from a random oracle.

The indifferentiability framework was introduced by Maurer et al. [21] as an extension
of the classical notion of indistinguishability, and further developed in the context of hash
functions by Coron et al. [11]. It proves that if a hash function HF based on an ideal
compression function subcomponent F is indifferentiable from an ideal primitive R (random
oracle), then HF can replace R in any system. Unlike for the security properties of Def. 1,
in the indifferentiability framework we consider information-theoretic adversaries. These
adversaries are computationally unbounded, and their advantages are measured in the
number of queries made to the oracles.

Definition 2. A hash function H with oracle access to an ideal compression function prim-
itive F is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive R if there exists a
simulator S, such that for any distinguisher D it holds that:

AdvPRO
H,S (D) =

∣∣∣Pr
[
DHF,F = 1

]
− Pr

[
DR,S

R
= 1
]∣∣∣ < ε. (3)

The simulator has oracle access to R and runs in time at most tS. The distinguisher runs
in time at most tD and makes at most q queries.

The distinguisher D converses either with the real world (HF,F) or the simulated world
(R,SR), and its goal is to tell both worlds apart.

Provable security approach. In the provable security framework, one argues xxx security of
the domain extender hash function H under some assumption on the yyy security of the
underlying compression function F. We say that H is (t, ε) xxx-secure if any adversary A run-
ning in time at most t has ε probability of success in breaking the xxx security of H. Similarly,
we define the security of the compression function F. Now, assuming a secure compression
function F with respect to property yyy under the provable security design paradigm, we
prove security of H for property xxx. That allows to upper bound the advantage Advxxx

H . If
yyy is identical with xxx, we speak of security preservation and when we have a weaker than
xxx security goal for yyy we speak of property amplification. Hash function security preserva-
tion results in the standard model for yyy ∈ {Coll,Sec[λ], eSec, aSec[λ],Pre[λ], ePre, aPre[λ]}
are discussed broadly in [15, 22] and in Sect. 5.

3. The Merkle-Damgård Design and Security Properties

As mentioned in Sect. 1, the most adopted approach for hash function domain extenders is
the iterative composition: let the compression function F : {0, 1}n×{0, 1}b → {0, 1}n take as
inputs a chaining or state variable h of size n bits and a message block m of size b bits, and
output the updated chaining variable of size n bits. In order to allow for input messages
of arbitrary length, the Merkle-Damg̊ard hash function needs an injective padding pad,
that transforms M into a message M ′ = pad(M) of length a multiple of the block size.
However, as becomes clear in Sect. 4.2, a simple injective padding is not sufficient. In
particular, we will consider the Merkle-Damg̊ard design with length strengthening, due to
Merkle [5], or strengthened Merkle-Damg̊ard [6]. This strengthened design uses a padding
function ls-pad that appends the encoding of the message length at the end of the message
to generate the padded message M ′ = ls-pad(M). Then, M ′ is processed as a sequence of
message blocks m1‖ . . . ‖m` with |mi| = b bits for i = 1, . . . , `. Additionally, the strengthened
Merkle-Damg̊ard design employs a fixed IV , for initialization vector (cf. Sect. 1). This value
will be the first state value of the Merkle-Damg̊ard design.

Now, we can define the Merkle-Damg̊ard hash function SMD as follows:

Algorithm SMDF(M):
m1‖ . . . ‖m` ← ls-pad(M)

h0 ← IV

For i = 0, . . . , ` do hi ← F(hi−1‖mi)

Return h`.

The established padding function ls-pad for the Merkle-Damg̊ard extender is a specific form
of a suffix-free padding. A suffix-free padding ensures that X‖pad(M) 6= pad(M ′) for all
M 6= M ′ and all arbitrary bit strings X. A distinct padding rule is the prefix-free one where
for any distinct M,M ′, there exists no bit string X such that pad(M ′) = pad(M)‖X. One
example of a prefix-free hash function includes the message length in bits as a part of the
first message block. Note that this padding rule is highly inefficient for long messages, the
length of which is not known in advance. In the remainder, by sf-pad and pf-pad we denote
any suffix-free and prefix-free padding algorithm, respectively.

From a practical perspective [3], the iterative principle of message processing offers
the benefit of computing the message digest “on the fly”. More precisely, the message is
processed in chunks of message blocks which are small enough to call the Merkle-Damg̊ard
design a streaming mode of operation. We clarify that classical streaming modes work on bit
level, whereas here we mean blockwise streaming. Other than temporarily storing message
bits up to a full block size ready to be evaluated, the Merkle-Damg̊ard hash function
stores temporarily also the intermediate chaining state result (until the next message block
arrives). On the negative side, the Merkle-Damg̊ard design does not permit for parallel
processing which offers a potential speed-up if multiple processors are available.

From a security perspective, the Merkle-Damg̊ard design with length strengthening
(SMD) offers Coll security guarantees by means of property preservation [5, 4]. The Sec

and Pre preservation of the SMD domain extender and its variants remained long under-
explored. In [22], Andreeva et al. showed that the iteration preserves neither of the two
properties.1 A result by Dean [23] and Kelsey and Schneier [14] shows that the Merkle-

1 We note that, albeit [22] considers SMD in the keyed setting, the results carry over to the
setting where SMD is keyless: the proof of preservation of Coll and the non-preservation of
Sec and Pre does not explicitly use the fact that the design is keyed.

Damg̊ard iteration looses a factor linear in the message length (in blocks) of the second
preimage security when the underlying compression function is assumed to be ideal.

If the underlying compression function of the SMD extender is a keyed function, then
SMD preserves only the ePre security notion and fails in the preservation of aPre, aSec and
eSec [22].

The indifferentiability analysis shows that the Merkle-Damg̊ard domain extender does
not behave like a random oracle. A concrete counterexample in the framework of Maurer et
al. [21] was exhibited in the work of Coron et al. [11]. A much earlier attack, known as the
length extension attack, also exemplifies the non-random behavior of the Merkle-Damg̊ard
extender. Let h1 = H(M1) be the hash result of the message M1 where M1 is unknown to
the adversary, but the length |M1| is known. It is easy for the adversary to append a suffix
M2 and compute the hash value h2 = H(M1‖M2). Such an attack should be infeasible in
min{2|M1|, |Y|} hash function evaluations for an ideal function as a domain extender and
shows that the Merkle-Damg̊ard construction deviates from an ideal function.

4. Merkle-Damgård Variants: Classification and Properties

Most popular domain extenders nowadays use the Merkle-Damg̊ard construction inter-
nally. In our attempt to provide a summary of the main Merkle-Damg̊ard-based domain
extenders, we first classify them according to several criteria.

4.1. Classification

Wide- versus narrow-pipe domain extenders. Analyzing the recent designs submitted to the
NIST SHA-3 hash function competition [16], we distinguish two main design strategies:
narrow-pipe and wide-pipe. The original wide-pipe design was introduced by Lucks [24],
and is characterized by keeping a full large internal state in the iterative Merkle-Damg̊ard
portion. As final step, a distinct final output transformation is employed on this “wide”
state to compress it to the desired output hash length, which is shorter than the inter-
nal state size. The concept of wide-pipe designs is generalized as a generic transform that
encompasses hash functions which process a large internal state (as a result of internal
compression function calls) and produce their outputs by invoking a distinct output trans-
formation function. Note that the final transformation could also evaluate additional inputs
other than the state value, such as message, fixed padding, or counter bits. Several second
round SHA-3 candidates have adopted the wide-pipe strategy, namely Blue Midnight Wish
[25], CubeHash [26], ECHO [27], Fugue [28], Grøstl [29], JH [30], Keccak [31], Luffa [32],
SIMD [33] and Shabal [34].

Narrow-pipe constructions, introduced by Rabin [3], are designated by iterating a state
as large as the output hash value. These constructions may also contain an optional output
transformation or other features but in essence are iterative designs with a narrow state.
Second round SHA-3 narrow-pipe designs are BLAKE [35], Hamsi [36], SHAvite-3 [37] and
Skein [38].

Keyed versus keyless domain extenders. Another separation of domain extenders is based
on the presence or lack of an explicit key input. When the key is unique for every message,
we refer to it as salt. Keyed designs are often less efficient than keyless but come with more
security guarantees. Many designs that have advanced in the NIST competition include
them as an optional input.

To clarify the use of keys in domain extenders in relation to the preservation security
results of Andreeva et al. [22], we provide a short discussion on the interpretation of these
results. All of the domain extenders in the work of Andreeva et al. are analyzed in the
keyed setting. Namely, the authors consider that the underlying compression function(s)
are keyed and in that sense the whole domain extender is rendered keyed. Thus, the security
results for all investigated domain extenders deal with property-preservation of the seven
main security notions of Rogaway and Shrimpton [15] (see Sect. 2.2). In our work, we deal
with seven security property preservation only when the underlying compression function
is explicitly keyed by design. Otherwise (when the compression function is keyless) for both
keyed and keyless domain extenders, we only consider the three properties Coll, Sec[λ], and
Pre[λ] (see Sect. 2.2).

We clarify that all findings of Andreeva et al. [22] translate easily to the ones presented
here. This is done by just ignoring the key input to the compression function in the work of
Andreeva et al. that is possible because the relevant security results here are independent
of whether or not the compression function is keyed. Thus, all results of analyzed keyed
constructions in Andreeva et al. are reducible to the seven or three main (overlapping)
notions that are relevant for the treatment of keyed versus keyless domain extenders in
this work.

4.2. Security Properties: High Level Intuition

In this section we provide a general discussion on Merkle-Damg̊ard variants with respect to
their (1) security guarantees in the standard model achieved by means of security preser-
vation making a standard security assumption on the compression function(s), and (2)
indifferentiability results in the random oracle model when the compression function(s) is
viewed as an ideal function.

Collision security. The SMD design preserves Coll security due to its suffix-free padding.
Suffix-free padding as a means of collision preservation was further generalized by Andreeva,
Mennink and Preneel [39] to facilitate the analysis of the second round SHA-3 hash function
candidates. The theorem applies to any suffix-free Merkle-Damg̊ard-based construction that
allows for an additional collision secure output transformation and/or a possible chopping
at the end. For convenience, this theorem is included in App. A. On the negative side,
Merkle-Damg̊ard-based designs without suffix-free padding, need not result in collision
resistance preservation as shown by Bellare and Ristenpart [40].

Second preimage and preimage security. Second preimage resistance of the Merkle-Damg̊ard
domain extender was first studied in the work of Lai and Massey [6]. In [22], it was shown
that most of the Merkle-Damg̊ard variants do not preserve Sec and Pre. The counterex-
amples that exhibit the lack of preservation exploit the possible loss of entropy in the
iteration of the state value. Most often loss of entropy is due to the introduction of fixed
bits through the state input by the initialization vector and possibly through the message
input. For example, typical counterexamples for Sec and Pre security consist of constructing
an underlying compression function that outputs IV if the state input equals IV , but acts
like a Sec/Pre secure compression function for all other inputs. Another security weakness
that additionally hurdles the preservation are the fixed padding message bits. Such non-
random inputs to the compression function lead to insecure Merkle-Damg̊ard style domain
extenders, unless some message and state randomization is applied. The approach of ran-

domizing the compression function inputs in the iterative portion of the domain extender
was for instance taken by [22, 41].

Always and everywhere second preimage and preimage security. The security notions aPre,
aSec, ePre, and eSec are only valid for keyed domain extenders. The general preservation
recipe for the second preimage and preimage security is applicable for aSec and aPre. To
achieve eSec, the randomization of the fixed padding bits is not required since an eSec

adversary controls the message bits and therefore the constant padding bits. Surprisingly,
the property of ePre is the easiest to satisfy and is preserved by all keyed domain extenders.
The reason for that is straightforward: the preservation of ePre depends on the ePre security
of the final compression function which is ePre by the original assumption.

Peudorandom oracle behavior. The length extension attack is a clearly demonstrate that the
domain extender is differentiable from a random oracle. An obvious way to avoid extension
attacks is to apply an independent output transformation at the end of a Merkle-Damg̊ard
iterative hash function. Now, under the assumption that the internal iterated compression
function F, as well as the independent output transformation G are ideal functions, Coron
et al. [11] show that the resulting composition is a PRO. They also observed that iterative
constructions that chop the final bits of the output, or with present prefix-free padding
also succumb to the extension attacks and allow for indifferentiability proofs. For a series
of other indifferentiability results on hash functions, we refer to [42, 43, 44].

Another structural approach to indifferentiability was exhibited by Dodis, Ristenpart and
Shrimpton [45]. Instead of assuming an ideal compression function F in the iteration, they
relax the idealness assumption by substituting it with the notion of preimage awareness.
Preimage awareness is a weaker notion than idealness (but a stronger notion than collision
resistance), and intuitively it means that if an adversary outputs a range value of H for later
use, then he must already know a preimage of it. Preimage awareness is a notion which
is preserved under iterative composition. Additionally, when a distinct final ideal output
transformation G is applied, the resulting domain extender also exhibits ideal behavior in
the sense of indifferentiability.

If a hash function design is proven indifferentiable, it means that the function behaves
like a random oracle. In particular, it guarantees that, up to a certain degree, the design
is secured against any generic attack, such as finding preimages, collisions, multicollisions,
etc., in the ideal model where the adversary has query access to the ideal compression
function [39, Thm. 1].

While these results are very helpful for generic compositions, often the underlying com-
pression function exhibits a highly non-ideal behavior, which makes most of the above result
inapplicable. In such cases, the indifferentiability proof is attempted by posing assumptions
on the idealness of the smaller scale components, e.g. permutations, block ciphers, etc. (see
Sect. 7).

5. Concrete Merkle-Damgård Alternatives and Their Security Prop-
erties

Next, we summarize the main characteristics and security properties of some of the most
prominent theoretical constructions in the hash function literature, as opposed to new
proposals to the NIST competition. This is a conscious decision aiming to provide an insight
into the design characteristics and security properties of theoretical domain extenders,

which give inspiration for the practical ones. A similar survey for the second round SHA-3
candidates is conducted in the work of Andreeva, Mennink and Preneel [39].

The algorithms of the theoretical domain extenders are given in Fig. 1. In Table 1, the
security properties of the constructions are summarized. Recall that the security of the SMD
construction is already analyzed in Sect. 4.2. We note that this work does not consider the
tightness of the security reductions (cf. [15]). These formal bounds can be found in the
corresponding references.

Prefix-free Merkle-Damg̊ard. The basic prefix-free Merkle-Damg̊ard [11] (PfMD) designs are
narrow-pipe, keyless iterative domain extenders that apply a prefix-free padding function
pf-pad (cf. Sect. 2).

Prefix-free domain extenders are proven to be indifferentiable from a random oracle in
the work of Coron et al. [11]. If the prefix-free designs are not as well suffix-free, they do
not preserve Coll, but they do if the padding is also suffix-free [22]. Irrespectively of the
presence of suffix-free padding, the prefix-free constructions also fail to achieve preservation
of Sec and Pre [22].

Enveloped Merkle-Damg̊ard. The enveloped Merkle-Damg̊ard [40] (EMD) was proposed by
Bellare and Ristenpart and resembles the design of HMAC [46]. It is a narrow-pipe, keyless
domain extender. EMD uses two fixed initialization vectors IV and IV ′. The first vector is
applied in a Merkle-Damg̊ard style as input to the first compression function. The second
IV ′ is provided as input to the final compression function together with the chaining vari-
able and the final input message bits and this step is known as the “enveloping” step of the
construction.

EMD is proven to be Coll preserving and indifferentiable from a random oracle in [40].
The suffix-free padding ensures the collision preservation. The “enveloping” is applied to
hide the internal Merkle-Damg̊ard construction and guarantees the indifferentiability re-
sult. Similar enveloping domain extenders are previously used by the NMAC and HMAC
constructions [46] to build PRFs out of compression functions, both proven to be indiffer-
entiable transforms in [11]. In [22], the EMD hash function is shown not to be Sec and Pre

preserving.

Merkle-Damg̊ard with permutation. The Merkle-Damg̊ard with permutation, due to Hirose,
Park and Yun [47], (MDP) domain extender is a narrow-pipe, keyless variant of the original
Merkle-Damg̊ard design. The difference with the Merkle-Damg̊ard construction is that a
permutation is applied before the processing of the last message block.

The permutation masks the internal Merkle-Damg̊ard style processing, similarly to the
idea of EMD, and MDP is proven indifferentiable from a random oracle when the underlying
compression function is an ideal function [47]. MDP also preserves Coll security due to
the suffix-free Merkle-Damg̊ard padding [39], but does not achieve Sec and Pre security
preservation by analogy to the Merkle-Damg̊ard style designs analyzed in Andreeva et
al. [22]. As a way of example, these non-preservation results are proven in App. B.

Linear hash. The linear hash function as described by Bellare and Rogaway [48] (LH)
is a narrow-pipe, keyed Merkle-Damg̊ard domain extender. The only difference with the
Merkle-Damg̊ard design is that it accepts an additional key input in every call of the
iteration. Moreover, each key is distinct and therefore LH requires number of key inputs
that is a linear in the message size. Notice that this approach ensures a domain separation

of the underlying compression function, and another way to view the construction is to
assume that it employs distinct compression functions for each message block evaluation.

Bellare and Rogaway showed in [48] that the design preserves eSec in case of equal-length
messages (thus in case LH is a fixed input length domain extender), but that it does not
preserve eSec in the general case (where the target and forged message may be of different
lengths). Additionally, the extender preserves ePre resistance, but it fails to conserve the
remaining four properties [22]. Bellare and Ristenpart [40] prove that domain extenders
that apply a distinct final compression function are indifferentiable from a RO. This result
applies to LH .

Linear XOR. The linear XOR by Bellare and Rogaway [48] (XLH) is a narrow-pipe, keyed
Merkle-Damg̊ard domain extender. In contrast to the LH hash function it adds the same
number of distinct keys by XORing these with the chaining values resulting from each
iteration of the Merkle-Damg̊ard style hash function. The first key is XORed with the
initialization vector IV and the final key is XORed with the final intermediate chaining
value, while the final hash result is left unmodified.

The XLH domain extender is shown to preserve eSec in [48]. Additionally, [22] showed
that this construction preserves Coll and ePre, and does not preserve the remaining security
properties. XLH is not is differentiable from a RO, by virtue of an attack described by [49].

Shoup’s hash. Shoup’s hash function [50] (SH) derives from the linear XOR hash function
and optimizes it in terms of the number of keys. It uses logarithmic number of keys (instead
of linear), following a specific sequence; the sequence was proven in [50] to be the optimal to
suffice to prove everywhere second preimage security (similarly to the latter two designs).

The security results are identical to the results for XLH .

ROX. The ROX [22] (ROX) domain extender is a narrow-pipe, keyed hash function. It
draws largely from the XOR-linear hash and Shoup’s hash. ROX requires a logarithmic
number of masks, instead of keys (as in the Shoup’s hash function), to be XORed with
the chaining values. The masks are generated by applying a function G1 to a sequence of
strings (K,µ, 〈i〉n) (for i = 1, . . . , blog(`)c) that consist of the compression function key K

of length k, the first k bits of the message, and an encoding of a counter i. A function G2

(optionally G2 could be identical with G1) is applied on inputs the first message bits µ,
the length encoding of the processed message length λ and a counter i of the necessary
invocations of the function to create the padding string. The padding function is suffix-
but not prefix-free.

From a security perspective, the suffix-free padding ensures the Coll security preservation,
and ePre security is trivially preserved. Everywhere second preimage security is argued
similarly to the latter two designs. The novelty here is the preservation of the remaining
four security properties. This is due to the randomization provided both by the masks
in the iteration and by the padding scheme chosen; however, the result is partially in
the random oracle model where G1 and G2 are assumed to be random functions and the
iterated compression function F is realized in the standard model and achieves standard
model security guarantees. ROX is not PRO as a result of an attack described in [51].

BCM. The backwards chaining mode by Andreeva and Preneel [41] (BCM) is a narrow-
pipe, keyed hash function. It uses three keys K1, K2 and K3 of fixed length (b + 2n) bits,
where |K2| = b and |K1| = |K3| = n where n is the state and b is the block size. It XORs the

key K1 and the most significant n bits of block m2 with the fixed initial chaining variable
IV . The message block m1 together with the resulting value from the XOR computation
form the input to the first application of F. In the iteration the message block mi and the
chaining variable hi−1 in-line are XORed with the most significant n bits of the next-in-line
message block mi+1 and form the inputs to the i-th compression function F. The one but
last block m`−1 is interpreted differently than the rest of the message blocks. Here the
difference is that the least significant n bits of m`−1 are XORed with the key K1, while
the chaining variable h`−2 is XORed with the first significant bits of K2 and m`. The final
input to the last compression function is provided by the last message block m` and the
chaining variable h`−1 XORed with keys K2 and K3, respectively.

The idea behind the BCM domain extender is the preservation of the main security
properties in the standard model eliminating the need of random functions to generate
masking input as is the case with the ROX construction. BCM succeeds in attaining Coll and
Sec preservation and the latter is possible due to the randomization of the internal chaining
values with message blocks down the line and the external states and the padding bits with
the provided three keys. BCM additionally preserves Pre security in the random oracle model
assuming the underlying compression function is an ideal function. No indifferentiability
result is known for the BCM construction.

HAIFA. The HAIFA design by Biham and Dunkelman [52] (HAIFA) is a narrow-pipe hash
function characterized by the inclusion of an bit counter of size usually 64 bits (to accom-
modate long messages) and an optional key input in every invocation of the compression
function. HAIFA is often referred to as a framework or a general transformation technique
that can be applied to any domain extender that is defined with the latter two characteris-
tics. The idea is incorporated also in three second round SHA-3 candidates: BLAKE [35],
ECHO [27] and SHAvite-3 [37].

The inclusion of a bit counter ensures the suffix and prefix properties of the design and
helps to prove it Coll secure and indifferentiable from a random oracle [39, 11]. HAIFA does
not, however, achieve Sec and Pre security in the preservation sense [22]. An alternative
result in the random oracle model shows that HAIFA achieves optimal (2n) second preimage
security if the underlying compression function is assumed to be a random oracle [53].

Dither hash. The dither hash function by Rivest [54] (Dither) is a narrow-pipe, keyless
hash function. Similarly to the HAIFA hash function it includes an additional counter-like
input. And while HAIFA introduces a bit counter and requires its size to accommodate long
messages, the design intension behind the dither construction is to decrease the number of
bits used for this extra input to either 2 or 16 bits. This increases the bandwidth available
for actual data. The additional input, called the “dithering” input, to the compression
function is formed by the consecutive elements of a fixed sequence. In his proposal Rivest
suggested the use the infinite abelian square-free sequence [54].

With respect to Coll, Sec and Pre preservation, the same results as for SMD apply to the
Dither construction. No indifferentiability result is known for the Dither hash function.

Randomized hash. Randomized Hashing or RMX by Halevi and Krawczyk [55] (RMX),
similarly to the HAIFA framework, can be adopted as a transform for any domain extension
method. The RMX transform is in its essence a message modification technique. It prepends
a random string R to the message as a first message block to be processed and then the
same random string is XORed with each message block. The idea is to randomize the

message inputs by XOR-ing a key (salt) input into the message. RMX was proposed as
a general transform that is particularly well-suited for digital signature applications of
hash functions. It aims the provision of security guarantees even when the compression
function is compromised with respect to collision security. It was formally showed that
just finding collisions on the compression function is not sufficient in order to break the
resultant signatures: instead, the attacker needs to solve a much harder cryptanalytical
problem, closer to finding second preimages.

The randomized hash mode of operation was hence originally proved to be everywhere
second preimage secure by making stronger (than everywhere second preimage) assump-
tions on the underlying compression function. In the security analysis of RMX [22] treating
the value R as either randomness per message or long term key yields identical results with
respect to seven property preservation. There, it is proven that RMX preserves Coll and
ePre, but none of the other notions are preserved. No indifferentiable results are known for
the RMX transform. In [56], Gauravaram and Knudsen demonstrated an existential forgery
attack for the RMX -hash-then-sign signature scheme, where the RMX hash function em-
ploys the Davies-Meyer compression function. However, this result does not contradict the
security claims of [55].

6. Other Domain Extenders

In the quest for Merkle-Damg̊ard alternatives, apart from the ones described in Sect. 5, a
number of domain extenders have appeared in literature that do not directly extend the
original Merkle-Damg̊ard design. In this section, we discuss some tree-based hash functions
and multi-pass hash functions. The incentives of these designs are twofold: increasing the
efficiency rate and/or the security guarantees. The theoretical domain extenders discussed
in this section are also included in Fig. 1 and Table 1.

6.1. Tree-Based Hash Functions

The tree-based constructions, in contrast to the Merkle-Damg̊ard based designs, allow for
parallelism. While Merkle-Damg̊ard-based designs require the message to be processed in a
sequential order, tree constructions split the message into blocks which could be processed
by independent processors or machines and the final result is combined to produce the
hash value. For applications where large amounts of data have to be hashed using parallel
processors, tree constructions are much more appropriate. They have the disadvantage
of a larger state information that needs to be kept (logarithmic in the message length,
as opposed to linear), but have the advantage that different branches in the tree can be
computed independently.

In this section, we will discuss three tree-based hash functions, namely the (strengthened)
Merkle tree [57], tree hash [48] and XOR-tree hash [48]. For conciceness, we will not discuss
variants of these that appeared in literature, such as [58, 59, 60], and constructions based
on concrete designs, such as [38]. Finally, we mention that Dodis et al. [61] and Bertoni
et al. [62] analyzed the required properties of tree hash functions to obtain indifferentiable
designs. We note that these results do not apply to the three tree-based designs discussed
here.

Strengthened Merkle tree. The strengthened Merkle tree [57] (SMT) is a narrow-pipe, key-
less domain extender. Firstly, to hash a message of arbitrary size, it is padded to the correct
length with a single 1 bit and a sufficient number of zeroes, such that it fills the minimal

number of blocks to produce a message with number of blocks multiple to ad where a is
the arity or number of inputs to the compression function and d is the minimal tree depth
required for hashing the message. On the very top level of the tree the message blocks are
hashed independently and the intermediate hash values are the result of the second layer
of inputs in the tree. The process is iterated until the root of the tree is reached where the
final compression function takes an extra input which is the message length encoding as
part of the strengthening.

Damg̊ard [4] and later Andreeva et al. [22] showed that tree hash preserves Coll security,
but Sec and Pre are not preserved. No indifferentiability results are known for tree hashes.

Tree hash function. The tree hash [48] (TH) is a narrow-pipe, keyed hash function. It differs
from the strengthened Merkle tree-based construction in the sense that an independent key
Ki is assigned to each level i of the tree.

For equal-length messages (thus in case TH is a fixed input length domain extender), the
design has been showed eSec secure by Bellare and Rogaway [48], but in the general case
(where the target and forged message may be of different lengths), the domain extender is
shown to preserve ePre only [22].

XOR-tree hash function. The XOR-tree hash function [48] (XTH) is a narrow-pipe, keyed
hash function. Differing from TH , the outputs of every tree level are XORed with a per
level key. The number of keys are logarithmic in the size of the padded message in blocks.
Several variants of XOR-tree hash function have appeared in the literature [58, 59, 60].
These variants work towards minimizing the key schedule for the basic XOR-tree hash
while retaining the same security strength. The optimizations are mainly achieved following
a key schedule similar to the Shoup’s hash function key scheduling scheme.

For equal-length messages, again Bellare and Rogaway [48] showed this domain extender
to preserve eSec. For arbitrary-length messages, Andreeva et al. [22] showed that this
construction preserves Pre and ePre, and that it does not preserve aSec and aPre. The
authors were unable to show or contradict the preservation of Coll and Sec, no to show
(non)-preservation of eSec for arbitrary-length messages.

To fix the deficiencies of the basic XOR-tree hash function for arbitrary message lengths
with respect to property preservation, Andreeva et al. [63] suggest a slightly modified con-
struction called the modified XOR-tree hash function. The construction is proved to pre-
serve all three notions of Coll, Sec, and Pre. The only difference with the original XOR-tree
domain extender is that here, the key used before the final application of the compression
function is a fixed key K∗, which means that K∗ is independent of the tree depth, while
in the original XOR-tree extender it would simply be the next key in the sequence.

6.2. Multi-Pass Hash Functions

A multi-pass domain extender processes the data in more than one pass. Multi-pass designs
can process additionally interleaved parts of the message. The idea behind having less
efficient multi-pipe designs is to ensure better security guarantees. However, as becomes
clear below, this goal is not always so easily attained.

Double pipe design. The double-pipe design [24] (LDP) was proposed by Lucks. It processes
the message in two dependent Merkle-Damg̊ard chains under two distinct initialization
vectors and the final result is computed by applying a final output transformation, which
is not necessarily distinct from the internal chained compression function(s).

Lucks double-pipe hash function achieves the same preservation security guarantees as
the Merkle-Damg̊ard design. In particular, the counterexamples for the preservation of
Sec and Pre of the Merkle-Damg̊ard design as illustrated in [22], apply to LDP similarly.
Collision resistance of LDP follows from the collision preservation proof of [39]: it can be
shown that collisions for the domain extender LDP can be reduced to collisions for either
F, or G defined as G(h, h′,m) = (F(h‖h′‖m),F(h′‖h‖m)), but it is clear that collisions for G

and F are equally hard to find. Finally, the LDP domain extender is proven indifferentiable
in [64].

Zipper hash function. The zipper hash [65] (Zipper) was proposed by Liskov. The message
is processed forward in a Merkle-Damg̊ard fashion. Then, the intermediate hash result is
used to initialize the further iterative processing of the same message in a reverse order
(reversing the data blocks), possibly with some distinct underlying compression function
under the Merkle-Damg̊ard iteration.

The counterexamples for the Merkle-Damg̊ard hash of Andreeva et al. apply to the zipper
hash to show that no Sec and Pre preservation is achievable for zipper hash. Additionally,
no security results are known on the Coll preservation of Zipper . The zipper hash is proven
indifferentiable from a random oracle up to the birthday bound even if the compression
functions in use are weak, i.e., they can be inverted and collisions can be found efficiently.

Concatenated hash function. The concatenated hash function is a multi-pipe design in the
sense that it concatenates the hash result of the processing of multiple independent message
pipes. Each pipe produces a hash result using a domain extension method. The final hash
value is the concatenation of the hash values from all message pipes. The concatenated
hash is therefore a general transform that is applied as a form of final transformation on
the result of hash values of independent evaluations of the same message under identical
or distinct domain extenders. The most popular in the literature is the concatenation
of multiple pipes of Merkle-Damg̊ard chains, each initialized under distinct initialization
vectors IVs. In general, concatenated hashing can be applied to any combination of domain
extenders, and therefore we do not include it in Fig. 1 and Table 1.

It was broadly believed that the bit security level of concatenated hash scales with the
number of hash pipes employed. For iterated domain extenders this turns out not to be
the case as collision attacks of Joux [12] show where the security level is only marginally
higher than a single plain Merkle-Damg̊ard chain. As for the preservation property results,
we notice that these follow from the combined security of the underlying domain extenders.

7. Block Cipher or Permutation Based Domain Extenders

A common approach to design compression functions is by building them based on one or
more block ciphers or permutations, and we will briefly elaborate on it. Notice, however,
that the security notions (Sect. 2.2) are not relevant to these primitives. In particular,
collisions for a permutation do not exist, and additionally, block ciphers and permutations
are usually easily invertible. As a consequence, when proving security properties of block
cipher or permutation based compression functions, one usually relies on the ideal model.
In the ideal model, the underlying building blocks are assumed to behave like random
primitives, and the adversary has only query access to these primitives. The adversary is
computationally unbounded, and his advantage is measured in the number of queries made
to the oracles. Note that if a compression function F is atk-secure in the ideal model, and

a domain extender is applied on top of F that is atk-preserving in the sense of Sect. 2.2
(Table 1), then the obtained hash function can be considered atk-secure in the ideal model
as well.

Consequently, there exist two ways to obtain security results of hash functions based on
permutations or block ciphers. First, if a compression function based on a block cipher or
permutation is proven secure in the ideal cipher model, one can exhibit further preservation
of that property by the domain extender (Sects. 3 and 5) again in the ideal cipher model.
Alternatively, if the compression function built on permutation(s) or block cipher(s) is triv-
ially insecure with respect to the basic properties, then one aims at proving direct security
of the domain extender assuming ideal behavior of the underlying primitive (permutation
or block cipher).

7.1. Block Cipher Based Domain Extenders

A block cipher E : K×M→M is a family of permutations indexed by K, and associated to
it is its inverse function E−1 : K×M→M. Usually, both E,E−1 are efficiently computable,
and the adversary has access to both.

Compression function security. Preneel, Govaerts and Vandewalle (PGV) [66] analyzed and
categorized 64 block cipher based compression functions, and twelve of them are formally
proven collision and preimage resistant by Black, Rogaway and Shrimpton [67]. Among
these are the Matyas-Meyer-Oseas, the Miyaguchi-Preneel and the Davies-Meyer compres-
sion functions. We note that all of these compression functions are keyless by design, and
as such the always and everywhere second preimage and preimage security is inapplicable.

Additionally, we note that the twelve secure PGV constructions are insecure in the
indifferentiability model, merely due to the presence of fixed-points [66, 68]. The results of
[66, 67] have been recently generalized by Stam [69], to cover more general block cipher
based compression function designs.

Security of the domain extender. Additionally to the results on the compression function,
Black et al. showed that eight of the remaining 52 PGV compression functions, would result
in collision and (non-optimal) preimage security in the SMD iteration. These bounds have
been improved by Duo and Li [70]. Additionally, Duo and Li analyze the second preimage
resistance of the 20 PGV-based hash function designs.

This result is, again, generalized by Stam [69]. The way to prove security of this form
is generally done in a graph-based approach, where the edge correspond to compression
function executions that can be realized using the queries to the oracle made by the ad-
versary. It is shown that all of twenty PGV compression functions are indifferentiable from
a random oracle when iterated in a MD with chop, NMAC and HMAC construction, and
for sixteen of the twenty constructions, the PfMD construction results in an indifferentiable
design [11, 42, 71, 72].

7.2. Permutation Based Domain Extenders

A permutation π :M→M is a map for which the domain and range space are identical.
Therefore, in order to build a permutation-based compression function, the compressing
needs to happen at a different time in the execution (e.g. before the permutation π is
executed).

Compression function security. In [73], Black, Cochran and Shrimpton analyzed 2n-bit to
n-bit compression functions based on one n-bit permutation, and proved them insecure
against collision and (second) preimage attacks. This result has been generalized by Ro-
gaway and Steinberger [74] and Stam [75] to compression functions with arbitrary input
and output sizes, and an arbitrary number of underlying permutations. Their bounds indi-
cate the expected number of queries required to find collisions or preimages for permutation
based compression functions. As positive results, Rogaway and Steinberger [76] and Shrimp-
ton and Stam [77] propose 2n- to n-bit compression functions based on 3 permutations that
achieve optimal collision and preimage resistance with respect to the bounds of [74, 75]. No
results are known on the second preimage resistance. No positive indifferentiability results
are known for permutation based compression functions.

Security of the domain extender. In the iteration, permutation based compression func-
tions may result in a secure hash function, though. A well-known example of this is the
sponge construction, due to Bertoni et al. [78]. A broad interpretation of the sponge hash
function renders it a keyless, wide-pipe, non-strengthened Merkle-Damg̊ard construction.
The sponge hash function iterates a state size of c + r bits, where r is the bit rate and c

is the capacity of the sponge. It consists of an absorbing phase and a squeezing phase. In
the absorbing phase, message blocks of r bits are compressed with the state by ways of its
compression function F(h,m) = π(h⊕ (m‖0c)). After the processing of all message blocks is
completed, a final transformation is applied, the squeezing phase, where the first r bits of
the state are returned as output blocks, interleaved with applications of the permutation
until the desired output length is achieved. Notice, that in contrast to other domain exten-
ders, the sponge hash function supports by design arbitrary output lengths. A well-known
sponge construction is Keccak by Bertoni et al. [31].

Obviously, the sponge compression function is vulnerable to collision, second preimage
and preimage attacks [73], and we cannot rely on the preservation strength of the design
to obtain security properties of the hash function (in the ideal model). Yet, the sponge
construction is proven indifferentiable from a random oracle if the permutation π is assumed
to be ideal [79]. In the ideal model, this results in collision, second preimage and preimage
security of the sponge design [39].

Several “sponge-like” designs are known in literature, among which the Grindahl design
by Knudsen, Rechberger and Thomsen [80], that do not exactly follow the original sponge
design. Similar approaches can be applied to these domain extenders to obtain similar
security bounds.

8. Application to NIST’s SHA-3 Competition

We will briefly consider the application of the classification of this work to NIST’s SHA-3
competition. We refer to [39] for a more detailed discussion of the security properties of
the 14 second round SHA-3 candidates.

First of all, each of the 14 SHA-3 candidates can be seen as an extension of the keyless
Merkle-Damg̊ard design, with an optional final transformation and/or chopping. Five of
the designs employ a prefix-free padding rule, and can be seen as PfMD constructions (three
of which moreover fit within the HAIFA design). Eleven of the designs have a suffix-free
padding rule, and therefore preserve collision resistance (Sect. 4.2). No preservation results
are known for the remaining security properties.

Refining the level of modularity, the SHA-3 candidates SHAvite-3 and Skein employ a
PGV-construction proven collision and preimage secure in [67], and the compression func-
tions of ECHO, Hamsi and SIMD fit in the generalized block cipher based model of [69].
For all of these designs, their domain extenders preserve collision resistance, which ren-
ders collision resistance bounds of the hash functions in the ideal model. The compression
function of the SHA-3 candidate Grøstl can be proven preimage and collision resistant up
to the bound of [74]. The Grøstl domain extender preserves collision resistance, but not
preimage resistance.

The SHA-3 candidates CubeHash, Fugue, JH, Keccak and Luffa can be considered
sponge(-like) designs, and all of these functions have a compression function vulnerable
to the attacks described in [73]. The indifferentiability result of [79] can be directly applied
to CubeHash and Keccak.

We notice that for some of the candidates, design-specific security approaches have re-
sulted in other security results [39], in particular with respect to indifferentiability bounds.
Finally, we notice that indifferentiability bounds imply an upper bound on the success
probabilities of breaking a hash function under any security notion [39]. Namely, one can
show that for any security notion atk of a hash function in the ideal model (Sect. 7), we
have Advatk

H (q) ≤ Pratk
RO(q) + AdvPRO

H (q), where Advatk
H (q) denotes the maximum advan-

tage of any adversary/distinguisher against security notion atk making at most q queries,
and Pratk

RO(q) denotes the success probability of a generic attack against H under atk, after
at most q queries.

For some of the SHA-3 candidates, using this result the indifferentiability bounds have
resulted in security bounds on the preimage, second preimage and collision resistance (in
the ideal model). It is clear from the above that optimal preimage, second preimage and
collision resistance is obtained if AdvPRO

H (q) = O(q/2n).

9. Conclusions

We analyzed the state-of-the-art security results of the original Merkle-Damg̊ard design and
its derivatives, with respect to the security definitions posited by Rogaway and Shrimpton
[15], and to the notion of pseudorandom oracle behavior, as formalized by Coron et al. in
the context of hash functions [11]. These result consider the security preservation properties
of the domain extenders from the underlying compression functions, and intuitively mean
that if an attacker can break a hash function under a security notion atk, then, one can
reduce this attack to an atk-forgery of the compression function. The presented analysis
extends the work of [22] in the sense that a wider variety of domain extenders is considered,
and that the security property PRO (pseudorandom oracle behavior) is considered as well.
A summary of the results is given in Table 1. Most of the 17 domain extenders considered
in this work preserve collision resistance, and about half of them is provably indifferentiable
from a random oracle. On the downside, (second) preimage is only preserved by a small
fraction of domain extenders. A way to resolve this preservation property issue is given in
Sect. 4.2, but this still leaves a further direction in the area of provable security.

Besides, we briefly summarized the state-of-the-art security results of hash functions
of which the underlying compression function consists of a block cipher or one or more
permutations, and applied these results to the NIST SHA-3 hash function competition [16].
This survey partially summarizes the classification by Andreeva, Mennink and Preneel [39].
Here, one does not consider “preservation” of security properties, but rather the security

is considered in case the underlying primitives are assumed to be ideal (for instance, a
random permutation or random block cipher).

Acknowledgments. This work has been funded in part by the IAP Program P6/26
BCRYPT of the Belgian State (Belgian Science Policy), in part by the European Com-
mission through the ICT program under contract ICT-2007-216676 ECRYPT II, and in
part by the Research Council K.U.Leuven: GOA TENSE. The first author is supported
by a Ph.D. Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). The
second author is supported by a Ph.D. Fellowship from the Institute for the Promotion of
Innovation through Science and Technology in Flanders (IWT-Vlaanderen).

Table 1. A summary of the security results of the theoretical domain extenders discussed
in this work. The symbol “3” indicates that the notion is provably preserved by the domain
extender, and “7” means that it is not preserved. The symbol “?” means that no result is
known, and “—” is used to indicate that the security notion is irrelevant for the (keyless)
domain extender. The security notions are explained in Sect. 2.2, and the domain extenders
in Sects. 3, 5 and 6.

Scheme Coll Sec aSec eSec Pre aPre ePre PRO

SMD [5, 4] 3 [5, 4] 7 [22] — — 7 [22] — — 7 [11]

PfMD [11] 7 [40] 7 [22] — — 7 [22] — — 3 [11]

EMD [40] 3 [40] 7 [22] — — 7 [22] — — 3 [40]

MDP [47] 3 [39] 7 — — 7 — — 3 [47]

LH [48] 7 [22] 7 [22] 7 [22] 7 [48] 7 [22] 7 [22] 3 [22] 3 [40]

XLH [48] 3 [22] 7 [22] 7 [22] 3 [48] 7 [22] 7 [22] 3 [22] 7 [49]

SH [50] 3 [22] 7 [22] 7 [22] 3 [50] 7 [22] 7 [22] 3 [22] 7 [49]

ROX [22] 3 [22] 3 [22] 3 [22] 3 [22] 3 [22] 3 [22] 3 [22] 7 [51]

BCM [41] 3 [41] 3 [41] — — 7 [41] — — ?

HAIFA [52] 3 [5, 4] 7 [22] — — 7 [22] — — 3 [11]

Dither [54] 3 [5, 4] 7 [22] — — 7 [22] — — ?

RMX [55] 3 [22] 7 [22] — — 7 [22] — — 7 [51]

SMT [57] 3 [22] 7 [22] — — 7 [22] — — ?

TH [48] 7 [22] 7 [22] 7 [22] 7 [22] 7 [22] 7 [22] 3 [22] ?

XTH [48] ? ? 7 [22] ? 3 [22] 7 [22] 3 [22] ?

LDP [24] 3 [39] 7 [22] — — 7 [22] — — 3 [64]

Zipper [65] ? 7 [22] — — 7 [22] — — 3 [65]

References

[1] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transac-
tions on Information Theory, 22(6):644–654, 1976.

[2] Ralph Merkle. Secrecy, Authentication, and Public Key Systems. UMI Research Press,
1979.

[3] Michael O. Rabin. Digitalized signatures. In Foundations of Secure Computation, pages
155–166, New York, 1978. Academic Press.

Algorithm SMDF(M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV
For i = 1 . . . ` do hi ← F(hi−1‖mi)
Return h`

Algorithm PfMD
F

(M):
m1‖ . . . ‖m` ← pf-pad(M) ; h0 ← IV
For i = 1 . . . ` do hi ← F(hi−1‖mi)
Return h`

Algorithm EMDF(M):
m1‖ . . . ‖m` ← emd-pad(M) ; h0 ← IV
For i = 1 . . . `− 1 do hi ← F(hi−1‖mi)
Return h` ← F(IV ′‖m`‖h`−1)

Algorithm MDPF(M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV
For i = 1 . . . `− 1 do hi ← F(hi−1‖mi)
Return h` ← F(π(h`−1)‖m`)

Algorithm LH F(K1‖ . . . ‖K`,M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV
For i = 1 . . . ` do hi ← F(Ki, hi−1‖mi)
Return h`

Algorithm XLH F(K‖K1‖ . . . ‖K`,M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV
For i = 1 . . . ` do
hi ← F(K, (hi−1 ⊕Ki−1)‖mi)

Return h`

Algorithm SH F(K‖K1‖ . . . ‖Kdlog `e,M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV
For i = 1 . . . ` do
hi ← F(K, (hi−1 ⊕Kν(i))‖mi)

Return h`

Algorithm ROXF(K,M):
m1‖ . . . ‖m` ← rox-pad(M) ; h0 ← IV

For i = 1 . . . blog(`)c do µi ← G1(K,M |lsbk , 〈i〉)
For i = 1 . . . ` do
hi ← F(K, (hi−1 ⊕ µν(i))‖mi)

Return h`
Algorithm BCM F(K1‖K2‖K3,M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV ⊕K1

For i = 1 . . . `− 2 do

hi ← F((mi+1|msb
n ⊕ hi−1)‖mi)

h`−1 ← F(((m` ⊕K2)|msb
n ⊕ h`−2)‖

(m`−1 ⊕ (0b−n‖K1)))
Return h` ← F((h`−1 ⊕K3)‖(m` ⊕K2))

Algorithm HAIFAF(M):
m1‖ . . . ‖m` ← hai-pad(M) ; h0 ← IV

S
$← {0, 1}s // S is a salt

For i = 1 . . . d|M |/be do
hi ← F(hi−1‖mi‖〈min{bi, |M |}〉l‖S)

If ` > |M |/be do h` ← F(h`−1‖m`‖〈0〉l‖S)
Return S, h`

Algorithm DitherF(M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0 ← IV

z1‖ . . . ‖z` ∈ {0, 1}16` a dithering sequence
For i = 1 . . . ` do hi ← F(hi−1‖mi‖zi)
Return h`

Algorithm RMXF(R,M):
m1‖ . . . ‖m` ← sf-pad(M)
h0 ← F(R‖IV)
For i = 1 . . . ` do
hi ← F(hi−1‖(mi ⊕ R))

Return h`
Algorithm SMT F(M):
m1‖ . . . ‖m` ← t-pad(M)

For j = 1 . . . ad do h0,j ← mj
For i = 1 . . . d and j = 1 . . . ad−i do
hi,j ← F(hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)
hd+1,1 ← F(hd,1‖〈|M |〉n(a−1))
Return hd+1,1

Algorithm XTH F(K‖K1‖ . . . ‖Kd+1,M):
m1‖ . . . ‖m` ← t-pad(M)

For j = 1 . . . ad do h0,j ← mj
For i = 1 . . . d and j = 1 . . . ad−i do
hi,j ← F(K, (hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)⊕Ki)
hd+1,1 ← F(K, (hd,1‖〈|M |〉n(a−1))⊕Kd+1)
Return hd+1,1

Algorithm TH F(K1‖ . . . ‖Kd+1,M):
m1‖ . . . ‖m` ← t-pad(M)

For j = 1 . . . ad do h0,j ← mj
For i = 1 . . . d and j = 1 . . . ad−i do
hi,j ← F(Ki, hi−1,(j−1)a+1‖ . . . ‖hi−1,ja)
hd+1,1 ← F(Kd+1, hd,1‖〈|M |〉n(a−1))
Return hd+1,1

Algorithm LDPF(M):
m1‖ . . . ‖m` ← ls-pad(M) ; h0, h

′
0 ← IV , IV ′

For i = 1 . . . `− 1 do
hi ← F(hi−1‖h′i−1‖mi)
h′i ← F(h′i−1‖hi−1‖mi)

Return h` ← F(h`−1‖h′`−1‖m`)

Algorithm Zipper
F

(M):
m1‖ . . . ‖m` ← sf-pad(M) ; h0 ← IV
For i = 1 . . . ` do hi ← F(hi−1‖mi)
For i = 1 . . . ` do
h`+1 ← F(h`+i−1‖m`−i+1)

Return h2`

Padding algorithms:

ls-pad(M) = M‖10-|M|-1-t mod b‖〈|M |〉t
emd-pad(M) = M‖10-|M|-1-64-n mod b‖〈|M |〉64
hai-pad(M) = M‖10-|M|-1-t-r mod b‖〈|M |〉t‖〈|n|〉r
t-pad(M) = M‖1‖0na

dloga((|M|+1)/n)e-|M|-1

rox-pad(M) = first d(|M |+ 2n)/be · b bits of

M‖G2(M |lsbk , 〈|M |〉, 〈1〉)‖G2(M |lsbk , 〈|M |〉, 〈2〉)‖ . . .

Fig. 1. Iterations SMD, PfMD,EMD,RMX ,MDP ,BCM and Zipper use compression function

F : {0, 1}n+b → {0, 1}n; LH ,XLH , SH and ROX use F : {0, 1}k × {0, 1}n+b → {0, 1}n; LDP
uses F : {0, 1}2n+b → {0, 1}n; SMT uses F : {0, 1}an → {0, 1}n; TH and XTH use F :

{0, 1}k × {0, 1}an → {0, 1}n; HAIFA and Dither use F : {0, 1}n+b+l+s → {0, 1}n, where for
Dither , l = 16 and s = 0. Iteration EMD requires the parameters to satisfy b ≥ n+ 64, BCM
requires b ≥ n, and HAIFA requires b ≥ r+ t. The function ν(i) is the largest integer j such
that 2j |i. G1 and G2 are described in Sect. 5. π : {0, 1}n → {0, 1}n is a random permutation.

[4] Ivan Damg̊ard. A design principle for hash functions. In Advances in Cryptology -
CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 416–427, Berlin,
1990. Springer-Verlag.

[5] Ralph Merkle. One way hash functions and DES. In Advances in Cryptology - CRYPTO ’89,
volume 435 of Lecture Notes in Computer Science, pages 428–446, Berlin, 1990. Springer-
Verlag.

[6] Xuejia Lai and James Massey. Hash function based on block ciphers. In Advances in
Cryptology - EUROCRYPT ’92, volume 658 of Lecture Notes in Computer Science, pages
55–70, Berlin, 1992. Springer-Verlag.

[7] Bert den Boer and Antoon Bosselaers. Collisions for the compression function of MD5.
In Advances in Cryptology - EUROCRYPT ’93, volume 765 of Lecture Notes in Computer
Science, pages 293–304, Berlin, 1994. Springer-Verlag.

[8] Hans Dobbertin. The status of MD5 after a recent attack. CryptoBytes, 2(2):1–6, 1996.
[9] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In Advances

in Cryptology - EUROCRYPT ’05, volume 3494 of Lecture Notes in Computer Science,
pages 19–35, Berlin, 2005. Springer-Verlag.

[10] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in the full SHA-1.
In Advances in Cryptology - CRYPTO ’05, volume 3621 of Lecture Notes in Computer
Science, pages 17–36, Berlin, 2005. Springer-Verlag.

[11] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya. Merkle-
Damg̊ard revisited: How to construct a hash function. In Advances in Cryptology -
CRYPTO ’05, volume 3621 of Lecture Notes in Computer Science, pages 430–448, Berlin,
2005. Springer-Verlag.

[12] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded con-
structions. In Advances in Cryptology - CRYPTO ’04, volume 3152 of Lecture Notes in
Computer Science, pages 306–316, Berlin, 2004. Springer-Verlag.

[13] John Kelsey and Tadayoshi Kohno. Herding hash functions and the Nostradamus attack.
In Advances in Cryptology - EUROCRYPT’06, volume 4004 of Lecture Notes in Computer
Science, pages 183–200, Berlin, 2006. Springer-Verlag.

[14] John Kelsey and Bruce Schneier. Second preimages on n-bit hash functions for much less
than 2n work. In Advances in Cryptology - EUROCRYPT ’05, volume 3494 of Lecture
Notes in Computer Science, pages 474–490, Berlin, 2005. Springer-Verlag.

[15] Phillip Rogaway and Thomas Shrimpton. Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and colli-
sion resistance. In Fast Software Encryption ’04, volume 3017 of Lecture Notes in Computer
Science, pages 371–388, Berlin, 2004. Springer-Verlag.

[16] National Institute for Standards and Technology. Announcing Request for Candidate Algo-
rithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family, November
2007. http://csrc.nist.gov/groups/ST/hash/documents/FR_Notice_Nov07.pdf.

[17] Douglas Stinson. Some observations on the theory of cryptographic hash functions. Des.
Codes Cryptography, 38(2):259–277, 2006.

[18] Phillip Rogaway. Formalizing human ignorance. In VIETCRYPT ’92, volume 4341 of
Lecture Notes in Computer Science, pages 211–228, Berlin, 2006. Springer-Verlag.

[19] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology - CRYPTO ’86, volume 263 of Lecture
Notes in Computer Science, pages 186–194, Berlin, 1987. Springer-Verlag.

[20] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In ACM Conference on Computer and Communications Security, pages
62–73, New York, 1993. ACM.

[21] Ueli Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodology. In Theory of

Cryptography Conference ’04, volume 2951 of Lecture Notes in Computer Science, pages
21–39, Berlin, 2004. Springer-Verlag.

[22] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Seven-property-
preserving iterated hashing: ROX. In Advances in Cryptology - ASIACRYPT ’07, volume
4833 of Lecture Notes in Computer Science, pages 130–146, Berlin, 2007. Springer-Verlag.

[23] Richard Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University,
Princeton, 1999.

[24] Stefan Lucks. A failure-friendly design principle for hash functions. In Advances in Cryptol-
ogy - ASIACRYPT ’05, volume 3788 of Lecture Notes in Computer Science, pages 474–494,
Berlin, 2005. Springer-Verlag.

[25] Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog, Mohamed El-Hadedy, Jørn
Amundsen, and Stig Frode Mjølsnes. Cryptographic Hash Function BLUE MIDNIGHT
WISH, 2009.

[26] Dan Bernstein. CubeHash specification, 2009.
[27] Ryad Benadjila, Olivier Billet, Henri Gilbert, Gilles Macario-Rat, Thomas Peyrin, Matt

Robshaw, and Yannick Seurin. SHA-3 Proposal: ECHO, 2009.
[28] Shai Halevi, William Hall, and Charanjit Jutla. The Hash Function “Fugue”, 2009.
[29] Praveen Gauravaram, Lars Knudsen, Krystian Matusiewicz, Florian Mendel, Christian

Rechberger, Martin Schläffer, and Søren Thomsen. Grøstl – a SHA-3 candidate, 2009.
[30] Hongjun Wu. The Hash Function JH, 2009.
[31] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. The KECCAK

sponge function family, 2009.
[32] Christophe De Cannière, Hisayoshi Sato, and Dai Watanabe. Hash Function Luffa, 2009.
[33] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD is a Message Digest,

2009.
[34] Emmanuel Bresson, Anne Canteaut, Benôıt Chevallier-Mames, Christophe Clavier,

Thomas Fuhr, Aline Gouget, Thomas Icart, Jean-François Misarsky, Mar̀ıa Naya-Plasencia,
Pascal Paillier, Thomas Pornin, Jean-René Reinhard, Céline Thuillet, and Marion Videau.
Shabal, a Submission to NIST’s Cryptographic Hash Algorithm Competition, 2009.

[35] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael Phan. SHA-3 proposal
BLAKE, 2009.

[36] Özgül Küçük. The Hash Function Hamsi, 2009.
[37] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function, 2009.
[38] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi

Kohno, Jon Callas, and Jesse Walker. The Skein Hash Function Family, 2009.
[39] Elena Andreeva, Bart Mennink, and Bart Preneel. Security reductions of the second round

SHA-3 candidates. In Information Security Conference - ISC ’10, volume 6531 of Lecture
Notes in Computer Science, pages 39–53, Berlin, 2010. Springer-Verlag.

[40] Mihir Bellare and Thomas Ristenpart. Multi-property-preserving hash domain extension
and the EMD Transform. In Advances in Cryptology - ASIACRYPT ’06, volume 4284 of
Lecture Notes in Computer Science, pages 299–314, Berlin, 2006. Springer-Verlag.

[41] Elena Andreeva and Bart Preneel. A three-property-secure hash function. In Selected Areas
in Cryptography ’08, volume 5381 of Lecture Notes in Computer Science, pages 228–244,
Berlin, 2009. Springer-Verlag.

[42] Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung. Indifferentiable security
analysis of popular hash functions with prefix-free padding. In Advances in Cryptology
- ASIACRYPT ’06, volume 4284 of Lecture Notes in Computer Science, pages 283–298,
Berlin, 2006. Springer-Verlag.

[43] Donghoon Chang and Mridul Nandi. Improved indifferentiability security analysis of
chopMD hash function. In Fast Software Encryption ’08, volume 5086 of Lecture Notes in
Computer Science, pages 429–443, Berlin, 2008. Springer-Verlag.

[44] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Some observations on indifferen-
tiability. In Australasian Conference on Information Security and Privacy - ACISP ’10,
volume 6168 of Lecture Notes in Computer Science, pages 117–134, Berlin, 2010. Springer-
Verlag.

[45] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging Merkle-Damg̊ard
for practical applications. In Advances in Cryptology - EUROCRYPT ’09, volume 5479 of
Lecture Notes in Computer Science, pages 371–388, Berlin, 2009. Springer-Verlag.

[46] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology - CRYPTO ’96, volume 1109 of Lecture Notes
in Computer Science, pages 1–15, Berlin, 1996. Springer-Verlag.

[47] Shoichi Hirose, Je Hong Park, and Aaram Yun. A simple variant of the Merkle-Damg̊ard
scheme with a permutation. In Advances in Cryptology - ASIACRYPT ’07, volume 4833
of Lecture Notes in Computer Science, pages 113–129, Berlin, 2007. Springer-Verlag.

[48] Mihir Bellare and Phillip Rogaway. Collision-resistant hashing: Towards making UOWHFs
practical. In Advances in Cryptology - CRYPTO ’97, volume 1294 of Lecture Notes in
Computer Science, pages 470–484, Berlin, 1997. Springer-Verlag.

[49] Mihir Bellare and Thomas Ristenpart. Hash functions in the dedicated-key setting: Design
choices and MPP transforms. In International Colloquium on Automata, Languages and
Programming - ICALP ’07, volume 4596 of Lecture Notes in Computer Science, pages
399–410, Berlin, 2007. Springer-Verlag.

[50] Victor Shoup. A composition theorem for universal one-way hash functions. In Advances
in Cryptology - EUROCRYPT ’00, volume 1807 of Lecture Notes in Computer Science,
pages 445–452, Berlin, 2000. Springer-Verlag.

[51] Mohammad Reza Reyhanitabar, Willy Susilo, and Yi Mu. Analysis of property-
preservation capabilities of the ROX and ESh hash domain extenders. In Australasian
Conference on Information Security and Privacy - ACISP ’09, volume 5594 of Lecture
Notes in Computer Science, pages 153–170, Berlin, 2009. Springer-Verlag.

[52] Eli Biham and Orr Dunkelman. A framework for iterative hash functions – HAIFA. Cryp-
tology ePrint Archive, Report 2007/278, 2007.

[53] Charles Bouillaguet, Pierre-Alain Fouque, Adi Shamir, and Sébastien Zimmer. Second
preimage attacks on dithered hash functions. Cryptology ePrint Archive, Report 2007/395,
2007.

[54] Ronald Rivest. Abelian square-free dithering for iterated hash functions, ECRYPT Hash
Function Workshop 2005.

[55] Shai Halevi and Hugo Krawczyk. Strengthening digital signatures via randomized hashing.
In Advances in Cryptology - CRYPTO ’06, volume 4117 of Lecture Notes in Computer
Science, pages 41–59, Berlin, 2006. Springer-Verlag.

[56] Praveen Gauravaram and Lars Knudsen. On randomizing hash functions to strengthen the
security of digital signatures. In Advances in Cryptology - EUROCRYPT ’09, volume 5479
of Lecture Notes in Computer Science, pages 88–105, Berlin, 2009. Springer-Verlag.

[57] Ralph Merkle. Protocols for public key cryptosystems. In IEEE Symposium on Security
and Privacy, pages 122–134. IEEE Computer Society Press, 1980.

[58] Wonil Lee, Donghoon Chang, Sangjin Lee, Soo Hak Sung, and Mridul Nandi. New parallel
domain extenders for UOWHF. In Advances in Cryptology - ASIACRYPT ’03, volume
2894 of Lecture Notes in Computer Science, pages 208–227, Berlin, 2003. Springer-Verlag.

[59] Wonil Lee, Donghoon Chang, Sangjin Lee, Soo Hak Sung, and Mridul Nandi. Construction
of UOWHF: Two new parallel methods. IEICE Transactions, 88-A(1):49–58, 2005.

[60] Palash Sarkar. Construction of universal one-way hash functions: Tree hashing revisited.
Discrete Applied Mathematics, 155(16):2174–2180, 2007.

[61] Yevgeniy Dodis, Leonid Reyzin, Ronald Rivest, and Emily Shen. Indifferentiability of
permutation-based compression functions and tree-based modes of operation, with applica-

tions to MD6. In Fast Software Encryption ’09, volume 5665 of Lecture Notes in Computer
Science, pages 104–121, Berlin, 2009. Springer-Verlag.

[62] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. Sufficient conditions
for sound tree and sequential hashing modes. Cryptology ePrint Archive, Report 2009/210,
2009.

[63] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas Shrimpton. Three-property-
preserving iterations of keyless compression functions, ECRYPT Hash Function Workshop
2007.

[64] Jonathan Hoch and Adi Shamir. On the strength of the concatenated hash combiner when
all the hash functions are weak. In International Colloquium on Automata, Languages
and Programming - ICALP ’08, volume 5126 of Lecture Notes in Computer Science, pages
616–630, Berlin, 2008. Springer-Verlag.

[65] Moses Liskov. Constructing an ideal hash function from weak ideal compression functions.
In Selected Areas in Cryptography ’06, volume 4356 of Lecture Notes in Computer Science,
pages 358–375, Berlin, 2007. Springer-Verlag.

[66] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash functions based on block ciphers:
A synthetic approach. In Advances in Cryptology - CRYPTO ’93, volume 773 of Lecture
Notes in Computer Science, pages 368–378, Berlin, 1993. Springer-Verlag.

[67] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-box analysis of the block-
cipher-based hash-function constructions from PGV. In Advances in Cryptology - CRYPTO
’02, volume 2442 of Lecture Notes in Computer Science, pages 320–335, Berlin, 2002.
Springer-Verlag.

[68] Hidenori Kuwakado and Masakatu Morii. Indifferentiability of single-block-length and
rate-1 compression functions. IEICE Transactions, 90-A(10):2301–2308, 2007.

[69] Martijn Stam. Blockcipher-based hashing revisited. In Fast Software Encryption ’09,
volume 5665 of Lecture Notes in Computer Science, pages 67–83, Berlin, 2009. Springer-
Verlag.

[70] Lei Duo and Chao Li. Improved collision and preimage resistance bounds on PGV schemes.
Cryptology ePrint Archive, Report 2006/462, 2006.

[71] Zheng Gong, Xuejia Lai, and Kefei Chen. A synthetic indifferentiability analysis of some
block-cipher-based hash functions. Des. Codes Cryptography, 48(3):293–305, 2008.

[72] Yiyuan Luo, Zheng Gong, Ming Duan, Bo Zhu, and Xuejia Lai. Revisiting the indifferen-
tiability of PGV hash functions. Cryptology ePrint Archive, Report 2009/265, 2009.

[73] John Black, Martin Cochran, and Thomas Shrimpton. On the impossibility of highly-
efficient blockcipher-based hash functions. In Advances in Cryptology - EUROCRYPT ’05,
volume 3494 of Lecture Notes in Computer Science, pages 526–541, Berlin, 2005. Springer-
Verlag.

[74] Phillip Rogaway and John Steinberger. Security/efficiency tradeoffs for permutation-based
hashing. In Advances in Cryptology - EUROCRYPT ’08, volume 4965 of Lecture Notes in
Computer Science, pages 220–236, Berlin, 2008. Springer-Verlag.

[75] Martijn Stam. Beyond uniformity: Better security/efficiency tradeoffs for compression
functions. In Advances in Cryptology - CRYPTO ’08, volume 5157 of Lecture Notes in
Computer Science, pages 397–412, Berlin, 2008. Springer-Verlag.

[76] Phillip Rogaway and John Steinberger. Constructing cryptographic hash functions from
fixed-key blockciphers. In Advances in Cryptology - CRYPTO ’08, volume 5157 of Lecture
Notes in Computer Science, pages 433–450, Berlin, 2008. Springer-Verlag.

[77] Thomas Shrimpton and Martijn Stam. Building a collision-resistant compression function
from non-compressing primitives. In International Colloquium on Automata, Languages
and Programming - ICALP ’08, volume 5126 of Lecture Notes in Computer Science, pages
643–654, Berlin, 2008. Springer-Verlag.

[78] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions,
ECRYPT Hash Function Workshop 2007.

[79] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. On the indifferentia-
bility of the sponge construction. In Advances in Cryptology - EUROCRYPT ’08, volume
4965 of Lecture Notes in Computer Science, pages 181–197, Berlin, 2008. Springer-Verlag.

[80] Lars Knudsen, Christian Rechberger, and Søren Thomsen. The Grindahl hash functions.
In Fast Software Encryption ’07, volume 4593 of Lecture Notes in Computer Science, pages
39–57, Berlin, 2007. Springer-Verlag.

[81] Yevgeniy Dodis and Prashant Puniya. Getting the best out of existing hash functions; or
what if we are stuck with SHA? In Applied Cryptography and Network Security ’08, volume
5037 of Lecture Notes in Computer Science, pages 156–173, Berlin, 2008. Springer-Verlag.

[82] Mridul Nandi. Characterizing padding rules of MD hash functions preserving collision
security. In Australasian Conference on Information Security and Privacy ’09, volume
5594 of Lecture Notes in Computer Science, pages 171–184, Berlin, 2009. Springer-Verlag.

A. Preservation of Collision Resistance

In this appendix, we generalize the well-known collision resistance preservation result of
the strengthened Merkle-Damg̊ard design [5, 4]. The result of Thm. 1 differs in three cases:
we consider any suffix-free padding, the proof allows for different compression functions
in one hash function evaluation, and it includes an optional chopping at the end. Related
work can, a.o., be found in [5, 4, 81, 82].

Theorem 1. Let l, b, n ∈ N such that l ≥ n. Let pad : {0, 1}∗ → {0, 1}b∗ be a suffix-free
padding and let f : {0, 1}l × {0, 1}b → {0, 1}l and g : {0, 1}l × {0, 1}b → {0, 1}n be two
compression functions. Consider the hash function H : {0, 1}∗ → {0, 1}n defined as follows,
where h0 = IV is the initialization vector:

H(M) = hk, where: (M1, . . . ,Mk) = pad(M),

hi = f(hi−1,Mi) for i = 1, . . . , k − 1,

hk = g(hk−1,Mk).

The advantage of finding collisions for H is upper bounded by the advantage of finding
collisions for f or g. Formally, if f is (t1, ε1) collision secure, and g is (t2, ε2) collision
secure, then H is (t, ε) collision secure for ε = ε1 + ε2, and t = min{t1, t2} − 2(K − 1)τf ,
where τf is the time to evaluate f and K is the maximum length of the messages, in blocks.

Proof. Suppose A is a (t, ε) collision finding attacker for H. We construct collision finding
adversaries B1 and B2 for f and g, respectively, using the following observation.
Let M,M ′ be two distinct messages such that H(M) = H(M ′). Let (M1, . . . ,Mk) be the
padded message of M , and (M ′1, . . . ,M

′
k′) be the padded message of M ′. Define the in-

termediate state values hi, h
′
i similarly. A collision on M,M ′ means that g(hk−1,Mk) =

g(h′k′−1,M
′
k′). Now, if (hk−1,Mk) 6= (h′k′−1,M

′
k′) this results in a collision for g. As-

sume the contrary, and let j ∈ {1, . . . ,min{k, k′} − 1} be the minimal index such that
(hk−j−1,Mk−j) 6= (h′k′−j−1,M

′
k′−j). We notice that such index j exists: in case k = k′ it

exists as M 6= M ′, and in case k 6= k′ it exists as the padding rule is suffix-free. By definition
of the index j, we have hk−j = h′k′−j , and in particular we obtain a collision for f :

f(hk−j−1,Mk−j) = hk−j = h′k′−j = f(h′k′−j−1,M
′
k′−j).

Both B1,B2 follow this procedure. If M,M ′ define a collision for f , B1 outputs this collision.
Similarly for B2 and g. Both adversaries work in time at most t+ 2(K − 1)τf , from which

we deduce t ≥ min{t1, t2} − 2(K − 1)τf . The messages M,M ′ define a collision for f or g.
Thus, we obtain ε ≤ ε1 + ε2. ut

The functions f and g in the proof can in general be any function, and in particular need
not be independent. For example, if l = n and g = f we retain the original Merkle-Damg̊ard
design, and if g = f ◦π we obtain the MDP mode of operation. The Merkle-Damg̊ard design
with chopping is also covered, with g = chopl−n◦f . We note that Thm. 1 can be generalized
arbitrarily, e.g. to more different compression functions, but for the purpose of this paper,
the mentioned generalization of the Merkle-Damg̊ard structure suffices.

B. Preservation Proofs for Merkle-Damgård with permutation

In this section, we formally prove that the MDP domain extender does not preserve second
preimage (Sec) and preimage resistance (Pre). This is done by constructing a atk-secure
compression function G, for which MDP G is not atk-secure. The proof is similar to the
proofs of [22], but differs in several aspects in order to cover the Merkle-Damg̊ard with
permutation construction.

Theorem 2. For atk ∈ {Sec,Pre}, the following holds. If there exists a (t, ε) atk-secure
compression function F : {0, 1}n+b → {0, 1}n−2, then there exists a (t, ε + 2/2n) atk-secure
compression function G : {0, 1}n+b → {0, 1}n and an adversary A running in constant time
with atk[λ]-advantage one in breaking MDP G.

Proof. Given a compression function F : {0, 1}n+b → {0, 1}n−2, consider the compression
function G : {0, 1}n+b → {0, 1}n given by:

G(h‖m) =

{
IV , if h = IV or h = π(IV),

F(h‖m)‖π(IV)
(n−1)

||IV (n)
,

(4)

where π is the permutation employed by MDP (see Fig. 1), and x(i) denotes the ith bit of
the complement of x.

If F is (t, ε) atk-secure, then G is (t, ε + 2/2n) atk-secure. Indeed, for Sec security: given
a uniformly random challenge h‖m ∈ {0, 1}n+b, provided that h 6∈ {IV , π(IV)}, finding a
second preimage is equally hard for F and G. Thus, given an adversary A that breaks G

in time t and with probability ε, one can construct an adversary B for F that also runs in
time t, who forwards the challenge to A, and simply returns A’s response h′‖m′. We obtain

AdvSec
F (B) = Pr

[
G(h‖m) = G(h′‖m′) ∧ h 6∈ {IV , π(IV)}

]
(5)

= Pr
[
G(h‖m) = G(h′‖m′)

]
− Pr [h ∈ {IV , π(IV)}] (6)

= Pr [A succeeds]− 2/2n. (7)

As this holds for any adversary A for G, we obtain AdvSec
F (B) = AdvSec

G (A) − 2/2n. The
same analysis holds for Pre.

Thus, G is (t, ε + 2/2n) atk-secure, but it is clear by construction that MDP G(M) = IV

for all M ∈ {0, 1}∗, and hence any message M ′ renders a (second) preimage. ut

