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Abstract. The idea of double block length hashing is to construct a compression function on 2n
bits using a block cipher with an n-bit block size. All optimally secure double block length hash
functions known in the literature employ a cipher with a key space of double block size, 2n-bit. On
the other hand, no optimally secure compression functions built from a cipher with an n-bit key space
are known. Our work deals with this problem. Firstly, we prove that for a wide class of compression
functions with two calls to its underlying n-bit keyed block cipher collisions can be found in about
2n/2 queries. This attack applies, among others, to functions where the output is derived from the
block cipher outputs in a linear way. This observation demonstrates that all security results of designs
using a cipher with 2n-bit key space crucially rely on the presence of these extra n key bits. The
main contribution of this work is a proof that this issue can be resolved by allowing the compression
function to make one extra call to the cipher. We propose a family of compression functions making
three block cipher calls that asymptotically achieves optimal collision resistance up to 2n(1−ε) queries
and preimage resistance up to 23n(1−ε)/2 queries, for any ε > 0. To our knowledge, this is the first
optimally collision secure double block length construction using a block cipher with single length key
space. We additionally prove this class of functions indifferentiable from random functions in about
2n/2 queries, and demonstrate that no other function in this direction achieves a bound of similar
kind.
Keywords. double block length; compression function; collision resistance; preimage resistance;
indifferentiability; beyond birthday bound.

1 Introduction

Double (block) length hashing is a well-established method for constructing a compression func-
tion with 2n-bit output based only on n-bit block ciphers. The idea dates back to the designs of
MDC-2 and MDC-4 in 1988 by Meyer and Schilling [29]. In recent years, the design methodology
got renewed attention in the works of [3, 6, 11, 14, 15, 18, 27, 34, 42]. Double length hash functions
have an obvious advantage over classical block cipher based functions such as Davies-Meyer and
Matyas-Meyer-Oseas, and more generally the PGV class of functions [36, 41]: the same type of
underlying primitive allows for a larger compression function. Yet, for double length compression
functions it is harder to achieve optimal n-bit collision and 2n-bit preimage security.

We focus on the simplest and most-studied type of compression functions, namely functions
that compress 3n to 2n bits. Those can be classified into two classes: compression functions that
internally evaluate a 2n-bit keyed block cipher E : {0, 1}2n×{0, 1}n → {0, 1}n (which we will call
the DBL2n class), and ones that employ an n-bit keyed block cipher E : {0, 1}n×{0, 1}n → {0, 1}n
(the DBLn class). The DBL2n class is well understood. It includes the classical compression
functions Tandem-DM and Abreast-DM [13] and Hirose’s function [8] (see Figure 1), as well as
Stam’s supercharged single call Type-I compression function design [40,41] (reconsidered in [20])
and the generalized designs by Hirose [7] and Özen and Stam [34]. As illustrated in Table 1,
all of these functions provide optimal collision security guarantees (up to about 2n queries),
and Tandem-DM, Abreast-DM, and Hirose’s function are additionally proven optimally preimage
resistant (up to about 22n queries). These bounds carry over to iterative designs, when a proper
domain extender is applied [2]. Lucks [22] introduced a compression function that allows for
collisions in about 2n/2 queries—and is therefore not included in the classification—but achieves
optimal collision resistance in the iteration. Members of the DBLn class are the MDC-2 and
MDC-4 compression functions [29], the MJH construction [15], and a construction by Jetchev et



al. [11]. For the MDC-2 and MJH compression functions, collisions and preimages can be found
in about 2n/2 and 2n queries, respectively.1 The MDC-4 compression function achieves a higher
level of collision and preimage resistance than MDC-2 [27], but contrary to the other functions
it makes four block cipher calls. Jetchev et al.’s construction makes two block cipher calls and
achieves 22n/3 collision security. Stam also introduced a design based on two calls, and proved it
optimally collision secure in a restricted security model where the adversary must fix its queries
in advance. Therefore we did not include this design in the table.

Further related results include the work of Nandi et al. [32], who presented a 3n-to-2n-bit
compression function making three calls to a 2n-to-n-bit one-way function, achieving collision
security up to 22n/3 queries. They extended this result to a 4n-to-2n-bit function using three 2n-
bit keyed block ciphers. Peyrin et al. [35] introduced double length compression functions based
on five compression function calls with n-bit output. Related are also Lucks wide-pipe design [21]
and its generalization by Nandi [31].

Unlike the DBL2n class, for the DBLn class no optimally secure compression function is known.
The situation is the same for the iteration, where none of these designs has been proven to achieve
optimal security. Determinative to this gap is the difference in the underlying primitive: in the
DBL2n class, the underlying primitive maps 3n bits to n bits and thus allows for more compression.
In particular, if we look at Tandem-DM, Abreast-DM, and Hirose’s function (Figure 1), the first
cipher call already compresses the entire input (u, v, w) to the compression function, and the
second cipher call is simply used to assure a 2n-bit output. In fact, these designs achieve their
level of security merely due to this property, for their proofs crucially rely on this (see also
Section 4).
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Fig. 1. From left to right, Tandem-DM, Abreast-DM, and Hirose’s compression function [8, 13].
All wires carry n bits. For Abreast-DM, the circle ◦ denotes bit complementation. For Hirose’s
function, const is any non-zero constant.

Our Contributions

Thus, from a theoretical point of view it is unreasonable to compare DBL2n and DBLn. But
the gap between the two classes leaves us with an interesting open problem: starting from a
single block cipher E : {0, 1}n × {0, 1}n → {0, 1}n, is it possible to construct a double length
compression function that achieves optimal collision and preimage security? This is the central
research question of this work. Note that Stam’s bound [40,43,44] does not help us here: it claims
that collisions can be found in at most (2n)(2r−1)/(r+1) queries, where r denotes the number
of block cipher calls, which results in the trivial bound for r ≥ 2. For r ≥ 2, denote by F r :
{0, 1}3n → {0, 1}2n a compression function that makes r calls to its primitive E.

Impossibility Result for Two-call Hashing. As a first contribution, we consider F 2 based on
two potentially distinct blockciphers E1, E2, and prove that for a very large class of functions of

1 In the iteration collision resistance is proven up to 23n/5 queries for MDC-2 [42] and 22n/3 queries for MJH [15];
the latter result got recently improved to 2n asymptotically [16].
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Table 1. Asymptotic ideal cipher model security guarantees of known functions in the classes
DBL2n (first) and DBLn (second). All results printed in bold are derived in this work.

compression
E-calls

collision preimage indifferen- underlying
function security security tiability cipher

Stam’s 1 2n [41] 2n [41] 2 (App. B.1)

Tandem-DM 2 2n [18] 22n [3, 19] 2 (App. B.1)

Abreast-DM 2 2n [6, 14] 22n [3, 19] 2 (App. B.1)

Hirose’s 2 2n [8] 22n [3, 19] 2 (App. B.1)

Hirose-class 2 2n [7] 2n [7] 2 (App. B.1)

Özen-Stam-class 2 2n [34] 2n [34] 2 (App. B.2)

MDC-2 2 2n/2 2n 2 (App. C)

MJH 2 2n/2 2n 2 (App. C)

JOS 2 22n/3 [11] 2n [11] 2 (App. D)

Our Proposal 3 2n (Sect. 5) 23n/2 (Sect. 6) 2n/2 (Sect. 7)

MDC-4 4 25n/8 [27] 25n/4 [27] 2n/4 (App. E)

this form one expects collisions in approximately 2n/2 queries. Covered by the attack are among
others designs with linear finalization function (the function that produces the 2n-bit output
given the 3n-bit input and the block cipher responses). We note that the compression function
by Jetchev et al. [11] is not vulnerable to the attack due to its non-linear finalization function.
Nevertheless, these results strengthen the claim that no practical optimally collision secure F 2

function exists.

Toward Optimally Collision and Preimage Secure F 3. Motivated by this, we increase
the number of calls to E, and consider F 3. In this setting, we derive a family of compression
functions which we prove asymptotically optimal collision resistant up to 2n(1−ε) queries and
preimage resistant up to 23n(1−ε)/2 queries, for any ε > 0. Our compression function family,
thus, achieves the same level of collision security as the well-established Tandem-DM, Abreast-
DM, and Hirose’s function, albeit based on a much weaker assumption. In the DBLn class, our
design clearly compares favorably to MDC-4 that makes four block cipher evaluations, and from
a provable security point of view it beats MDC-2 and MJH, still, an extra E evaluation has to be
made which results in an efficiency loss. The introduced class of compression functions is simple
and easy to understand: they are defined by 4 × 4 matrices over the field GF (2n) which are
required to comply with easily satisfied conditions. Two example compression functions in this
class are given in Figure 2.

The collision and preimage security proofs of our compression function family rely on basic prin-
ciples from previous proofs, but in order to accomplish optimal collision security (and as our
designs use n-bit keyed block ciphers) our proofs have become significantly more complex. The
collision and preimage security proofs of all known DBL2n functions (see Table 1) crucially rely
on the property that one block cipher evaluation defines the input to the second one. For F 3 this
cannot be achieved as each primitive call fixes at most 2n bits of the function input. Although
one may expect this to cause an optimal proof to become unlikely, this is not the case. Using a
new proof approach—we smartly apply the methodology of “wish lists” (by Lee et al. [17,19] and
Armknecht et al. [3]) to collision resistance—we manage to achieve asymptotically the close to
2n collision security for our family of functions.

Nonetheless, the bound on preimage resistance does not reach the optimal level of 22n queries.
One can see this as the price we pay for using single key length rather than double key length block
ciphers: a rather straightforward generalization of the pigeonhole-birthday attack of Rogaway and
Steinberger [39] shows that, when the compression function behaves “sufficiently random”, one
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Fig. 2. Two example compression functions from the family of functions introduced and evaluated
in this work. For these constructions, all wires carry n = 128 bits, and the arithmetic is done over
GF (2128). We further elaborate on these designs and their derivations in Section 4.

may expect a preimage in approximately 25n/3 queries (cf. Section 2). The asymptotic preimage
bound of 23n/2 found in this work closely approaches this generic bound.

Indifferentiability. Beyond these security notions, the indifferentiability framework of Maurer
et al. [23] has gained recent attention. Indifferentiability is an important security criterion as it
guarantees that a construction based on an underlying idealized primitive shows no structural
flaws: generic attacks on such a design are impossible up to the proven bound, and weaknesses, if
any, come from the underlying primitive. Indifferentiability is well suited for composition: a hash
function indifferentiability result (based on an underlying compression function) and a compres-
sion function indifferentiability result (based on, say, a block cipher) compose to security of the
hash function based on the ideality of the block cipher. Several hash function indifferentiability
results exist [4,5,9] and compression functions are usually easier to analyze than hash functions,
and therefore it is of interest to study the indifferentiability of compression functions.

We prove that our compression function design is indifferentiable from a random compression
function up to about 2n/2 queries (tight). This bound is worse than the collision and preimage
bounds, but this is in fact as expected. Indeed, as for single block length compression functions,
the PGV functions are known to be differentiable from random functions [12], and it turns out
that this problematic situation also applies to double length functions: we demonstrate in Appen-
dices B-D that all functions in the DBL2n class, as well as MDC-2, MJH, and JOS (in the DBLn

class), are trivially differentiable from a random function in 2 queries. In general, indifferentiability
appears to be much harder to achieve then “simply” collision and preimage security.

Our indifferentiability proof crucially relies on the above-mentioned key characteristics of
F 3, but is in general made possible by the sequential block cipher evaluation of the design. We
additionally show that a similar proof approach results in a tight 2n/4 indifferentiability bound
for MDC-4 based on two distinct block ciphers.2

Publication History and Subsequent Work

The results in this article have appeared in the proceedings of ASIACRYPT 2012 [25] and of IMA
Cryptography and Coding 2013 [26]. This article is the full version including all proofs that were

2 The MDC-4 compression function based on one single block cipher is differentiable in 2 queries.
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not present in the proceedings versions. The impossibility proof for two-call hashing from [25]
turned out to miss a subtle side condition. In this article, the condition is added, and we explain
the necessity of it.

Several follow-up works on [25, 26] have appeared, and we highlight the most relevant ones.
Firstly, Hong and Kwon [10] reconsidered the preimage security of the compression function
of [25], and found an alternative preimage attack in approximately 23n/2 queries. They also look
at the compression function in Merkle-Damg̊ard mode and note that preimages for the resulting
hash function can be found in about 27n/4 queries, due to a meet-in-the-middle attack.

Abed et al. [1] introduced Counter-bDM : {0, 1}(b+1)n → {0, 1}bn, a generalization of Hirose’s
compression function to b ≥ 2 parallel evaluations of a block cipher with bn-bit key. Using the
principle of wish lists similarly as in [25], the authors derive asymptotically optimally collision
and preimage security. However, for b ≥ 2 the scheme requires a block cipher with a much larger
key.

Miyaji and Rashed [30] recently introduced a three-call compression function in the DBLn class
which is claimed to achieve optimal 2n collision and 22n preimage resistance in a Merkle-Damg̊ard
mode of operation. These results surprisingly contradict the generalizations of the pigeonhole-
birthday attacks of Rogaway and Steinberger [39] as derived in [25] (see also Section 2). In more
detail, these generic attacks show that a preimage for the compression function can be expected
in at most 25n/3 queries, and for the iterated design in at most 211n/6 � 22n queries (due to
the meet-in-the-middle attack). In fact, it turns out that the compression function proposal of
Miyaji and Rashed is flawed, allowing for collisions in 22n/3 and preimages in 2n queries. The
latter can be used to derive preimages for the iterated design in about 23n/2 queries. A more
detailed discussion of the scheme of [30], along with the collision and preimage attacks, is given
in Appendices A.

Outline

We present and formalize the security model in Section 2. Then, in Section 3 we derive our
impossibility result on F 2. We propose and analyze our family of compression functions in Sec-
tion 4. Collision resistance, preimage resistance, and indifferentiability of this family of functions
is proven in Sections 5-7. This work is concluded in Section 8. Supporting indifferentiability
guarantees for all other functions in Table 1 is derived in Appendices B-E.

2 Security Model

For n ≥ 1, we denote by Bloc(n) the set of all block ciphers with a key and message space of n bits.
Let E ∈ Bloc(n). For r ≥ 1, let F r : {0, 1}3n → {0, 1}2n be a double length compression function
making r calls to its block cipher E. We can represent F r by mappings fi : {0, 1}(i+2)n → {0, 1}2n
for i = 1, . . . , r + 1 as follows:

F r(u, v, w) = (y, z), where:

for i = 1, . . . , r:

(ki,mi)← fi(u, v, w; c1, . . . , ci−1) ,

ci ← E(ki,mi) ,

(y, z)← fr+1(u, v, w; c1, . . . , cr) .

For r = 3, the F r compression function design is depicted in Figure 3. This generic design is a
generalization of the permutation based hash function construction described by Rogaway and
Steinberger [39]. In fact, it is straightforward to generalize the main findings of [39] to our F r

design and we state them as preliminary results. If the collision- and preimage-degeneracies are
sufficiently small (these values intuitively capture the degree of non-randomness of the design with
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respect to the occurrence of collisions and preimages), one can expect collisions after approxi-
mately 2n(2−2/r) queries and preimages after approximately 2n(2−1/r) queries. We refer to [39] for
the details. First of all, these findings confirm that at least two cipher calls are required to get 2n

collision resistance. More importantly, from these results we can conclude that F r can impossibly
achieve optimal 22n preimage resistance. Yet, it may still be possible to construct a function that
achieves optimal collision resistance and almost-optimal preimage resistance.

1 Fgen
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Fig. 3. F 3 : {0, 1}3n → {0, 1}2n making three block cipher evaluations.

Collision and Preimage Resistance

Throughout, we consider security in the ideal cipher model: we consider an adversary A that is a

probabilistic algorithm with oracle access to a block cipher E
$← Bloc(n) randomly sampled from

Bloc(n). We consider A to be computationally unbounded, and its complexity is measured by
the number of queries made to its oracles. The adversary can make forward queries and inverse
queries to E, and these are stored in a query history Q as indexed tuples of the form (ki,mi, ci),
where ki denotes the key input, and (mi, ci) the plaintext/ciphertext pair. For q ≥ 0, by Qq we
define the query history after q queries. We assume that the adversary never makes queries to
which it knows the answer in advance.

A collision-finding adversary A for F r aims at finding two distinct inputs to F r that compress
to the same range value. In more detail, we say that A succeeds if it finds two distinct tuples
(u, v, w), (u′, v′, w′) such that F r(u, v, w) = F r(u′, v′, w′) and Q contains all queries required for
these evaluations of F r. Formally, we define the collision security of F r as follows.

Definition 1. The advantage of a collision-finding adversary A is defined as

advcoll
F r (A) = Pr

(
E

$← Bloc(n), (u, v, w), (u′, v′, w′)← AE,E−1
:

(u, v, w) 6= (u′, v′, w′) ∧ F r(u, v, w) = F r(u′, v′, w′)

)
.

We define by advcoll
F r (q) the maximum advantage of any adversary making q queries to its oracle.

For preimage resistance, we focus on everywhere preimage resistance [38], which captures
preimage security for every point of {0, 1}2n. Consider any range point (y, z) ∈ {0, 1}2n. We say
that A succeeds in finding a preimage if it obtains a tuple (u, v, w) such that F r(u, v, w) = (y, z)
and Q contains all queries required for this evaluation of F r. Formally, we define the preimage
security of F r as follows.

Definition 2. The advantage of an everywhere preimage-finding adversary A is defined as

advepre
F r (A) = max

(y,z)∈{0,1}2n
Pr

(
E

$← Bloc(n), (u, v, w)← AE,E−1
(y, z) :

F r(u, v, w) = (y, z)

)
We define by advepre

F r (q) the maximum advantage of any adversary making q queries to its oracle.
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Indifferentiability

The indifferentiability framework, introduced by Maurer et al. [23], is a security notion that
formally captures the “distance” between a cryptographic construction and its random equivalent.
Informally, it gives a sufficient condition under which an ideal primitive R can be replaced by

F r using an ideal subcomponent E
$← Bloc(n). We employ the adaption and simplification by

Coron et al. [5]. Recent results by Ristenpart et al. [37] show that indifferentiability does not
capture all properties of a random oracle, it applies to single stage games only. Nevertheless, this
notion captures pretty many games and remains the best way to prove that a hash or compression
function behaves like a random oracle.

Definition 3. Let R : {0, 1}3n → {0, 1}2n be a random function. Let S be a simulator with the
same domain and range as E with oracle access to R and making at most qS queries, and let D
be a distinguisher making at most qD queries. The differentiability advantage of D is defined as

adviff
F r,S(D) =

∣∣Pr
(
DF r,E = 1

)
−Pr

(
DR,S = 1

)∣∣ .
We refer to (F r, E) as the real world, and to (R,S) as the simulated world. We denote D’s left
oracle (F r or R) by L and its right oracle (E or S) by R.

3 Impossibility Result for Two-call Double Length Hashing

We present an attack on a wide class of double block length compression functions with two calls.
To suit the analysis, we consider a slightly more restricted design (compared with Section 2),
namely, where the two underlying primitives are two different block ciphers E1, E2 : {0, 1}n ×
{0, 1}n → {0, 1}n. In more detail, the block cipher used at the ith iteration (for i = 1, 2) is Ei.
Let F 2 be a compression function of this form. We pose a condition on the finalization function
f3, such that if this condition is satisfied, collisions for F 2 can be found in about 2n/2 queries.
Although we are not considering all possible compression functions, we cover the most interesting
and intuitive ones, such as compression functions with linear finalization function f3. Compression
functions with non-linear f3 are covered up to some degree (but we note that the attack does
not apply to the compression function of [11], for which collision security up to 22n/3 queries is
proven).

We first state the attack. Then, by ways of examples, we illustrate its generality. For the
purpose of the attack, we introduce the function leftn which on input of a bit string of length 2n
bits outputs the leftmost n bits.

Proposition 1. Let E1 ← Bloc(n) and E2
$← Bloc(n). Let F 2 : {0, 1}3n → {0, 1}2n be a compres-

sion function as described in Section 2, with first block cipher being E1 and second block cipher
E2. Suppose there exists a bijective function L such that for any u, v, w, c1, c2 ∈ {0, 1}n we have

leftn ◦ L ◦ f3(u, v, w; c1, c2) = leftn ◦ L ◦ f3(u, v, w; c1, 0) . (1)

Suppose furthermore that for any (u, v, w; c1) 6= (u′, v′, w′; c′1),

Pr

(
c2 ← E2(f2(u, v, w; c1)), c′2 ← E2(f2(u′, v′, w′; c′1)) :

rightn ◦ L ◦ f3(u, v, w; c1, c2) = rightn ◦ L ◦ f3(u′, v′, w′; c′1, c
′
2)

)
≥ 1

2n
, (2)

where the probability is taken over the randomness of E2. Then, there is an adversary against F 2

that makes 2 · (2n/2 + 1) queries, for which the expected number of collisions it finds is at least
1/2.
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Proof. Let F 2 be a compression function and let L be a bijection such that (1) holds. First, we
consider the case of L being the identity function, and next we show how this attack extends to
the case L is an arbitrary bijection.

Suppose (1) holds with L the identity function. This means that the first n bits of f3(u, v, w; c1, c2)
do not depend on c2 and we can write f3 as a concatenation of two functions g1 : {0, 1}4n → {0, 1}n
and g2 : {0, 1}5n → {0, 1}n as follows:

f3(u, v, w; c1, c2) = g1(u, v, w; c1)‖g2(u, v, w; c1, c2) .

Let α ∈ N. We present an adversary A for F 2. The first part of the attack is derived from [39].

• Make α queries (k1,m1) → c1 to E1 that maximize the number of tuples (u, v, w) with
f1(u, v, w) hitting any of these values (k1,m1). By the pigeonhole principle,3 the adversary
obtains at least α · 23n/22n = α2n tuples (u, v, w; c1) for which it knows the first block cipher
evaluation;
• Again by the balls-and-bins principle, there exists a value y such that at least α tuples satisfy
g1(u, v, w; c1) = y;
• Varying over these α tuples, compute (k2,m2) = f2(u, v, w; c1) and query (k2,m2) to E2 to

obtain a c2. A finds a collision for F 2 if it obtains two tuples (u, v, w; c1, c2), (u′, v′, w′; c′1, c
′
2)

that satisfy g2(u, v, w; c1, c2) = g2(u′, v′, w′; c′1, c
′
2).

Due to (2) and by linearity of expectation, which applies even though the responses by E2 are
not mutually independent, the expected number of collisions in the last round is at least

(
α
2

)
1

2n .

Putting α = 2n/2 + 1, the expected number of collisions is at least 1/2. In total, the attack is
done in approximately 2 · (2n/2 + 1) queries.

It remains to consider the case of L being an arbitrary bijection. Define F
2

as F 2 with f3 replaced
by f3 = L ◦ f3. Using the idea of equivalence classes on compression functions [28] we prove that

F 2 and F
2

are equally secure with respect to collisions. Let A be a collision finding adversary

for F
2
. We construct a collision finding adversary A for F 2, with oracle access to E1, E2, that

uses A to output a collision for F 2. Adversary A proceeds as follows. It forwards all queries
made by A to its own oracle. Eventually, A outputs two tuples (u, v, w), (u′, v′, w′) such that

F
2
(u, v, w) = F

2
(u′, v′, w′). Denote by c1 the block cipher outcome on input of f1(u, v, w) and by

c2 the outcome on input of f2(u, v, w; c1). Define c′1 and c′2 similarly. By construction, as (u, v, w)

and (u′, v′, w′) form a collision for F
2
, we have

L ◦ f3(u, v, w; c1, c2) = L ◦ f3(u′, v′, w′; c′1, c
′
2) .

Now, bijectivity of L implies that f3(u, v, w; c1, c2) = f3(u′, v′, w′; c′1, c
′
2), and hence (u, v, w) and

(u′, v′, w′) form a collision for F 2. (Recall that F 2 and F
2

only differ in the finalization function f3,
the functions f1 and f2 are the same.) We thus obtain advcoll

F
2 (q) ≤ advcoll

F 2 (q). The derivation in

reverse order is the same by symmetry. But F
2

satisfies (1) for L the identity function. Therefore,

the attack described in the first part of the proof applies to F
2
, and thus to F 2. ut

We demonstrate the impact of the attack by giving several example functions that fall in the
categorization. We stress that the requirements of Proposition 1 are in fact solely requirements
on f2 and f3; f1 can be any function.

Suppose F 2 uses a linear finalization function f3. Say, f3 is defined as follows:(
a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

)
(u, v, w, c1, c2)> = (y, z)>,

3 If k balls are thrown in l bins, the α fullest bins in total contain at least αk/l balls.
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where addition and multiplication is done over the field GF (2n). Now, if a25 = 0 we set L =
( 0 1

1 0

)
which corresponds to swapping y and z. If a25 6= 0, we set L =

( 1 −a15a
−1
25

0 1

)
, which corresponds to

subtracting the second equation a15a
−1
25 times from the first one.

The attack also covers designs whose finalization function f3 rotates or shuffles its inputs,
where one defines L so that the rotation gets undone. For instance, for MDC-2 f3 is defined over
n/2-bit words as f3(ul, ur, vl, vr, wl, wr; cl1, c

r
1, c

l
2, c

r
2) = (cl1 ⊕ wl, cr2 ⊕ wr, cl2 ⊕ wl, cr1 ⊕ wr), where

ul and ur denote the left and right half of u, and it satisfies (1) for

L =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

Re-shuffling the output of f3 can even be defined at bit level, in which case L is a 22n × 22n

permutation matrix.

In general, if f3 is a sufficiently simple add-rotate-xor function, it is possible to derive a
bijective L that makes (1) satisfied. This is possible by composing multiple bijective mappings
L. Up to a degree, the attack also covers general non-linear finalization functions. However, it
clearly does not cover all functions and it remains an open problem to either close this gap or
to come with a (possibly impractical) F 2 compression function that provable achieves optimal
collision resistance. One direction may be to start from the compression function with non-linear
finalization f3 by Jetchev et al. [11], for which collision resistance up to 22n/3 queries is proven.

Remark 1. The original impossibility result for two-call double length hashing [25] was missing
the condition (2). Consequently, it was possible to derive (contrived) designs invulnerable to the
attack. For instance, if at step 3, for all α tuples (u, v, w; c1), f2 outputs the same key k2 but the
messages m2 are all distinct, then the outcomes c2 are distinct for all α tuples. If, additionally,
g2(u, v, w; c1, c2) = c2, then collisions happen with probability 0. Also if g2 is a variant that only
uses a few bits of (u, v, w; c1) to mask c2, collisions happen with probability at most O(α/2n).
The new condition (2) allows us to avoid these cases.

4 Double Length Hashing with Three E-calls

Motivated by the negative result of Section 3, we target the existence of double length hashing
with three block cipher calls. We introduce a family of double length compression functions
making three cipher calls that achieve asymptotically optimal 2n collision resistance and preimage
resistance significantly beyond the birthday bound (up to 23n/2 queries). We note that, although
the preimage bound is non-optimal, it is close to the generic bound dictated by the pigeonhole-
birthday attack (Section 2).

Let GF (2n) be the field of order 2n. We identify bit strings from {0, 1}n and finite field elements
in GF (2n) to define addition and scalar multiplication over {0, 1}n. In the family of double
block length functions we propose in this section, the functions f1, f2, f3, f4 of Figure 3 will be
linear functions over GF (2n). For two tuples x = (x1, . . . , xl) and y = (y1, . . . , yl) of elements
xi, yi ∈ {0, 1}n, we define by x·y their inner product

∑l
i=1 xiyi ∈ {0, 1}n.

Before introducing the design, we first explain the fundamental consideration upon which the
family is based. The security proofs of all DBL2n functions known in the literature (cf. Table 1)
crucially rely on the property that one block cipher evaluation defines the input to the other one.
For DBL2n functions this can easily be achieved: any block cipher evaluation can take as input
the full 3n-bit input state (u, v, w). Considering the class of functions DBLn, and F r of Figure 3
in particular, this cannot be achieved: one block cipher “processes” at most 2n out of 3n input

9



1 FA = colQ-left

u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

F 3
A(u, v, w) = (y, z), where:

c1 ← E(u, v) ,

k2 ← a1 ·(u, v, c1) ,

m2 ← a2 ·(u, v, c1, w) ,

y ← E(k2,m2) +m2 ,

k3 ← a3 ·(u, v, c1) ,

m3 ← a4 ·(u, v, c1, w) ,

z ← E(k3,m3) +m3 .

Fig. 4. The family of compression functions F 3
A where A is a 4× 4 matrix as specified in the text.

Arithmetics is done over GF (2n).

bits. In our design, we slightly relax this requirement, by requiring that any two block cipher
evaluations define the input to the third one. Although from a technical point of view one may
expect that this change causes optimal collision resistance to be harder or even impossible to be
achieved, we will demonstrate that this is not the case due to new proof techniques employed to
analyze the collision resistance.

Based on this key observation we propose the compression function design F 3
A of Figure 4. Here,

A =


a1

a2

a3

a4

 =


a11 a12 a13 0
a21 a22 a23 a24

a31 a32 a33 0
a41 a42 a43 a44

 (3)

is a 4× 4 matrix over GF (2n). Here, as a14 = a34 = 0, for simplicity we will write a1(u, v, c1) :=
a1(u, v, c1, 0) and a3(u, v, c1) := a3(u, v, c1, 0). Note that, provided A is invertible and a24, a44 6=
0, any two block cipher evaluations of F 3

A define (the inputs of) the third one. For instance,
evaluations of the second and third block cipher fix the vector A(u, v, c1, w)>, which by invertibility
of A fixes (u, v, c1, w) and thus the first block cipher evaluation. Evaluations of the first and second
block cipher fix the inputs of the third block cipher as a24 6= 0. For the proofs of collision and
preimage resistance, however, we will need to posit additional requirements on A. As we will
explain, these requirements are easily satisfied.

In the remainder of this section, we state our results on the collision resistance of F 3
A in

Section 5 and on the preimage resistance in Section 6.

5 Collision Resistance of F 3
A

We prove that, provided its underlying matrix A satisfies some simple conditions, F 3
A satisfies

optimal collision resistance. In more detail, we pose the following requirements on A:

• A is invertible;
• a12, a13, a24, a32, a33, a44 6= 0;
• a12 6= a32 and a13 6= a33.

We refer to the logical AND of these requirements as colreq.

10
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Fig. 5. For n = 128, the function advcoll
F 3
A

(q) of (4) for ε = 1/35 and for the particular choice of

values t1, t2 (solid line) and the optimal bound of q(q + 1)/22n (dashed line).

Theorem 1. Let E
$← Bloc(n). Suppose A satisfies colreq. Then, for any positive integral values

t1, t2,

advcoll
F 3
A

(q) ≤ 2t22q + 3t2q + 11q + 3t1t
2
2 + 7t1t2

2n − q
+

q2

t1(2n − q)
+ 3 · 2n

(
eq

t2(2n − q)

)t2
. (4)

The proof is given in Section 5.1. The basic proof idea is similar to existing proofs in the literature
(e.g. [27,42]) and is based on the usage of thresholds t1, t2. For increasing values of t1, t2 the first
term of the bound increases, while the second two terms decrease. Although the proof derives basic
proof principles from literature, for the technical part we deviate from existing proof techniques
in order to get a bound that is “as tight as possible”. In particular, we introduce the usage of wish
lists in the context of collisions, an approach that allows for significantly better bounds. Wish lists
have been introduced by Lee et al. [17, 19] and Armknecht et al. [3] for the preimage resistance
analysis of DBL2n functions, but they have never been used for collision resistance as there never
was a need to do so. Our analysis relies on this proof methodology, but as for collisions more
block cipher evaluations are involved (one collision needs six block cipher calls while a preimage
requires three) this makes the analysis more technical and delicate.

The goal now is to find a good threshold between the first term and the latter two terms of
(4). To this end, let ε > 0 be any parameter. We put t1 = q and t2 = 2nε (we can assume t2 to
be integral). Then, the bound simplifies to

advcoll
F 3
A

(q) ≤ 5 · 22nεq + 10 · 2nεq + 12q

2n − q
+ 3 · 2n

(
eq

2nε(2n − q)

)2nε

.

From this, we find that for any ε > 0 we have

advcoll
F 3
A

(2n/23nε)→ 0 for n→∞ .

Hence, given that the bound holds for any ε, this implies that the F 3
A compression function

achieves close to optimal 2n collision security for n→∞, asymptotically. For n = 128, the bound
on advcoll

F 3
A

is depicted in Figure 5, where we take a slightly different value for t1 to achieve a better

bound (to be precise, t1 = q/(3t22 + 7t2)1/2). The collision advantage hits 1/2 for log2 q ≈ 118.3,
relatively close to the threshold 127.5 for q(q+ 1)/22n. For larger values of n this gap approaches
0.

5.1 Proof of Theorem 1

The proof of collision resistance of F 3
A follows the basic spirit of [27], but crucially differs in the

way the probability bounds are computed. A new approach here is the usage of wish lists. While

11



1 FA = colQ-left-labeled

u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

1L

2L 3L

2 colQ-right-labeled

u′ v′ w′

c′1

A

a1·(u′, v′, c′1)

a2·(u′, v′, c′1, w
′)

a3·(u′, v′, c′1)

a4·(u′, v′, c′1, w
′)

y z

1R

2R 3R

Fig. 6. Configuration coll(Q). The configuration is satisfied if Q contains six (possibly the same)
queries that satisfy this setting. We require (u, v, w) 6= (u′, v′, w′).

the idea of wish lists is not new—it has been introduced by Lee et al. [17, 19] and Armknecht et
al. [3] for double block length compression functions, and used by Mennink [27] for the analysis
of MDC-4—in these works wish lists are solely used for the analysis of preimage resistance rather
than collision resistance. Given that in a collision more block cipher evaluations are involved, the
analysis becomes more complex. At a high level, wish lists rely on the idea that in order to find a
collision, the adversary must at some point make a query that “completes this collision” together
with some other queries already in the query history. Wish lists keep track of such query tuples,
and the adversary’s goal is to ever obtain a query tuple that is in such wish list. A more technical
treatment can be found in the proof of Lemma 1.

We consider any adversary that has query access to its oracle E and makes q queries stored in
a query history Qq. Its goal is to find a collision for F 3

A, in which it by definition only succeeds if it
obtains a query history Qq that satisfies configuration coll(Qq) of Figure 6. Formally, coll(Qq) is set
if for some (u, v, w) 6= (u′, v′, w′) there exists query tuples (k1,m1, c1), (k2,m2, c2), (k3,m3, c3) ∈
Qq and (k′1,m

′
1, c
′
1), (k′2,m

′
2, c
′
2), (k′3,m

′
3, c
′
3) ∈ Qq such that:

1. (k1,m1) = (u, v) and (k2,m2, k3,m3)> = A(u, v, c1, w)>;

2. (k′1,m
′
1) = (u′, v′) and (k′2,m

′
2, k
′
3,m

′
3)> = A(u′, v′, c′1, w

′)>;

3. m2 ⊕ c2 = m′2 ⊕ c′2;

4. m3 ⊕ c3 = m′3 ⊕ c′3.

This means,

advcoll
F 3
A

(q) = Pr (coll(Qq)) . (5)

Above set of tuples is also called a “solution” to the configuration. For the sake of readability of
the proof, we label the block cipher positions in Figure 6 as follows. In the left F 3

A evaluation (on
input (u, v, w)), the block ciphers are labeled 1L (the one on input (u, v)), 2L (the bottom left
one), and 3L (the bottom right one). The block ciphers for the right F 3

A evaluation are labeled
1R, 2R, 3R in a similar way. When we say “a query 1L”, we refer to a query that in a collision
occurs at position 1L.

12



For the analysis of Pr (coll(Qq)) we introduce an auxiliary event aux(Qq). Let t1, t2 > 0 be any
integral values. We define aux(Qq) = aux1(Qq) ∨ · · · ∨ aux4(Qq), where

aux1(Qq) :
∣∣{(ki,mi, ci), (kj ,mj , cj) ∈ Qq : i 6= j ∧ mi + ci = mj + cj

}∣∣ > t1 ;

aux2(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : a1 ·(ki,mi, ci) = Z

}∣∣ > t2 ;

aux3(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : a3 ·(ki,mi, ci) = Z

}∣∣ > t2 ;

aux4(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : mi + ci = Z

}∣∣ > t2 .

By basic probability theory, we obtain for (5):

Pr (coll(Qq)) ≤ Pr (coll(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) . (6)

We start with the analysis of Pr (coll(Qq) ∧ ¬aux(Qq)). For obtaining a query history that
fulfills configuration coll(Qq), it may be the case that a query appears at multiple positions. For
instance, the queries at positions 1L and 2R are the same. We split the analysis of coll(Qq) into
essentially all different possible cases, but we do this in two steps. In the first step, we make
a distinction among the cases a query occurs in both words at the same position. For binary
α1, α2, α3, we define by collα1α2α3(Q) the configuration coll(Q) of Figure 6 restricted to

α1 = 1⇐⇒ 1L = 1R⇐⇒ (k1,m1, c1) = (k′1,m
′
1, c
′
1) ,

α2 = 1⇐⇒ 2L = 2R⇐⇒ (k2,m2, c2) = (k′2,m
′
2, c
′
2) ,

α3 = 1⇐⇒ 3L = 3R⇐⇒ (k3,m3, c3) = (k′3,m
′
3, c
′
3) .

In other words, a solution to coll(Qq) is a solution to collα1α2α3(Qq) if the queries at positions κL
and κR are the same if and only if ακ = 1. Moreover, a solution to collα1α2α3(Qq) for α1, α2, α3 ∈
{0, 1} is a solution to coll(Qq). Thus, coll(Qq)⇒

∨
α1,α2,α3∈{0,1} collα1α2α3(Qq), and from (5-6) we

obtain the following bound on advcoll
F 3
A

(q):

advcoll
F 3
A

(q) ≤
∑

α1,α2,α3∈{0,1}

Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) . (7)

Note that we did not make a distinction yet whether or not a query occurs at two “different”
positions (e.g. at positions 1L and 2R). These cases are analyzed for each of the sub-configurations
separately, as becomes clear later. Probabilities Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) for the different
choices of α1, α2, α3 are bounded in Lemmas 1-4. The proofs are rather similar, and we only bound
the probability on coll000(Qq) in full detail (Lemma 1). A bound on Pr (aux(Qq)) is derived in
Lemma 5.

Lemma 1. Pr (coll000(Qq) ∧ ¬aux(Qq)) ≤
t2q+7q+3t1t22+3t1t2

2n−q .

Proof. Sub-configuration coll000(Qq) is given in Figure 7. The block cipher queries at positions a
and !a are required to be different, and so are the ones at positions b, !b and c, !c.

We consider the probability of the adversary finding a solution to configuration coll000(Qq)
such that Qq satisfies ¬aux(Qq). Consider the ith query, for i ∈ {1, . . . , q}. We say this query is
a winning query if it makes coll000(Qi) ∧ ¬aux(Qi) satisfied for some set of other queries in the
query history Qi−1. We can assume the ith query does not make aux(Qi) satisfied: if it would, by
definition it cannot be a winning query.

Recall that, although we narrowed down the number of possible positions for a winning query
to occur (in coll000(Qq) it cannot occur at both 1L and 1R, at both 2L and 2R, or at both 3L
and 3R), it may still be the case that such a query appears at multiple “different” positions,
e.g. 1L and 2R. Note that by construction, a winning query can appear at at most three block
cipher positions of Figure 7. In total, there are 26 sets of positions at which the winning query
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3 colQ000-left

u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

a

b c

4 colQ000-right = colQ000-S1-right = colQ000-S2-right

u′ v′ w′

c′1

A

a1·(u′, v′, c′1)

a2·(u′, v′, c′1, w
′)

a3·(u′, v′, c′1)

a4·(u′, v′, c′1, w
′)

y z

!a

!b !c

Fig. 7. Configuration coll000(Q). We require (u, v, w) 6= (u′, v′, w′).

can appear at at the same time. Discarding symmetric cases caused by swapping (u, v, w) and
(u′, v′, w′), one identifies the following 13 sets of positions:

S1 = {1L} , S4 = {1L, 2L} , S7 = {1L, 2R} , S10 = {1L, 2L, 3L} ,
S2 = {2L} , S5 = {1L, 3L} , S8 = {1L, 3R} , S11 = {1L, 2L, 3R} ,
S3 = {3L} , S6 = {2L, 3L} , S9 = {2L, 3R} , S12 = {1L, 2R, 3L},

S13 = {1L, 2R, 3R} .

Note that there are many more symmetric cases among these, but we are not allowed to dis-
card those as these may result in effectively different collisions. For j = 1, . . . , 13 we denote by
coll000:Sj (Q) configuration coll000(Q) with the restriction that the winning query must appear at
the positions in Sj . By basic probability theory,

Pr (coll000(Qq) ∧ ¬aux(Qq)) ≤
13∑
j=1

Pr
(
coll000:Sj (Qq) ∧ ¬aux(Qq)

)
. (8)

coll000:S1(Qq). Rather than considering the success probability of the ith query, and then sum
over i = 1, . . . , q (as is done in the analysis of [6–8,11,14,18,27,34,41], hence all collision security
proofs of Table 1), the approach in this proof is to focus on “wish lists”. Intuitively, a wish list
is a continuously updated sequence of query tuples that would make configuration coll000:Sj (Qq)
satisfied. During the attack of the adversary, we maintain an initially empty wish list WS1 .
Consider configuration coll000(Q) with the query at position S1 = {1L} left out (see Figure 8).
Note that every set of five query tuples (some of which may be the same) that satisfy configuration
coll000:S1(Qq), uniquely define a tuple (u, v, c1). This tuple is, indeed, uniquely determined by the
queries at 2L and 3L by invertibility of A. Concretely, this means that if this exact query will
ever be made, this will be a winning query (due to the corresponding set of five queries in Qq
that satisfy coll000:S1(Qq)). The idea of the wish list is to maintain a list of all such query tuples.
We remark that, technically, there may be different solutions to configuration coll000:S1(Qq) that
define the same wish, but this is not a problem: it simply implies that the number of wishes is at
most the number of solutions to configuration coll000:S1(Qq) (and in the end we will bound the
size of WS1 by the number of solutions to coll000:S1(Qq)). The wish list WS1 will be maintained
continuously: suppose the adversary makes a query, and denote by Q the updated query history.
Then, identify all sets of five query tuples in Q that satisfy configuration coll000:S1(Qq) and such
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5 colQ000-S1-left = colQ000-S7-left = colQ100-left

u v wc1
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a1·(u, v, c1)
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4 colQ000-right = colQ000-S1-right = colQ000-S2-right
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a2·(u′, v′, c′1, w
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a3·(u′, v′, c′1)

a4·(u′, v′, c′1, w
′)

y z
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Fig. 8. Configuration coll000:S1(Q). We require (u, v, w) 6= (u′, v′, w′).

that the new query appears at least once. For each of these solutions to the configuration, add
the corresponding (u, v, c1) to the wish list.

As we have restricted to the case the winning query only occurring at the position of S1,
we can assume a query never adds itself to a wish list.4 Clearly, in order to find a collision for
F 3
A in this sub-configuration, the adversary needs to wish for a query at least once. Suppose the

adversary makes a query E(k,m) where (k,m, c) ∈ WS1 for some c. We say that (k,m, c) is
wished for, and the wish is granted if the query response equals c. As the adversary makes at
most q queries, such wish is granted with probability at most 1/(2n− q), and the same for inverse
queries. By construction, each element from WS1 can be wished for only once, and we find that

the adversary finds a collision with probability at most
|WS1

|
2n−q .

Now, it suffices to upper bound the size of the wish listWS1 after q queries, and to this end we
bound the number of solutions to the configuration of Figure 8. By ¬aux1(Qq), the configuration
has at most t1 choices for 2L, 2R. For any such choice, by ¬aux2(Qq) we have at most t2 choices
for 1R. Any such choice fixes w′ (as a24 6= 0), and thus the query at position 3R, and consequently
z. By ¬aux4(Qq), we have at most t2 choices for 3L. The queries at positions 2L and 3L uniquely
fix (u, v, c1) by invertibility of A. We find |WS1 | ≤ t1t

2
2, and hence in this setting a collision is

found with probability at most t1t
2
2/(2

n − q).
coll000:Sj(Qq) for j = 2, 3. Both cases are the same by symmetry, and we consider S2 only.

The analysis is similar to the one for S1, and we only present the computation of the bound
on the wish list WS2 after q queries. Consider configuration coll000(Q) with the query at position
S2 = {2L} left out (see Figure 9). By ¬aux1(Qq), the configuration has at most t1 choices for
3L, 3R. For any such choice, by ¬aux3(Qq) we have at most t2 choices for 1L and at most t2
choices for 1R. Any such choice fixes w′ (as a44 6= 0), and thus the query at position 2R, and
consequently y. The query at position 1L fixes (u, v, c1) and together with query 3L this fixes w.
Any choice of queries thus uniquely fixes (a1·(u, v, c1), a2·(u, v, c1, w), y− a2·(u, v, c1, w)). We find
|WS2 | ≤ t1t22, and hence in this setting a collision is found with probability at most t1t

2
2/(2

n− q).

coll000:Sj(Qq) for j = 4, 5. Both cases are the same by symmetry, and we consider S4 only.

The analysis differs from the ones before, because in this setting the success probability can
be analyzed more easily. As the winning query (k,m, c) should appear at positions 1L and 2L,
we require it to satisfy k = a1·(k,m, c). Any query satisfies this equation with probability at most

4 A winning query that would appear at multiple positions is counted in coll000:Sj (Qq) for some other set Sj .
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Fig. 9. Configuration coll000:S2(Q). We require (u, v, w) 6= (u′, v′, w′).

1/(2n − q) (as a12, a13 6= 0). As the adversary makes at most q queries, in this setting a collision
is found with probability at most q/(2n − q).

coll000:S6(Qq). By construction, there must be a query (k,m, c) in the query history (correspond-
ing to position 1L) that satisfies a1·(k,m, c) = a3·(k,m, c). So the problem shifts to bounding the
probability that the adversary ever finds a query (k,m, c) that satisfies this equation. As a12 6= a32

and a13 6= a33, the adversary never obtains such query except with probability at most q/(2n− q)
(for the same reasoning as for S4).

coll000:Sj(Qq) for j = 7, 8. Both cases are the same by symmetry, and we consider S7 only.
The analysis is similar to the one for S1, and we only present the definition of the wish listWS7

and the computation of the bound on WS7 . Consider configuration coll000(Q) with the queries
at positions S7 = {1L, 2R} left out (see Figure 10). For any set of four queries that satisfy the
configuration at positions {2L, 3L, 1R, 3R}, the tuple (u, v, c1) is added to WS7 . By construction,
this tuple is required to satisfy (u, v, c1) = (a1 ·(u′, v′, c′1), a2 ·(u′, v′, c′1, w′), y − a2 ·(u′, v′, c′1, w′)).

We upper bound the number of solutions to the configuration of Figure 10 after q queries. By
¬aux1(Qq), the configuration has at most t1 choices for 3L, 3R. For any such choice, by ¬aux3(Qq)
we have at most t2 choices for 1R. The queries at positions 1R and 3R uniquely fix (u′, v′, c′1, w

′)
(as a44 6= 0), and thus the values u = a1 ·(u′, v′, c′1) and v = a2 ·(u′, v′, c′1, w′). Together with the
query 3L this fixes c1 (as a33 6= 0). Any choice of queries thus uniquely fixes (u, v, c1). We find
|WS7 | ≤ t1t2, and hence in this setting a collision is found with probability at most t1t2/(2

n− q).

coll000:S9(Qq). The analysis is similar to the one for S1, and we only present the definition of
the wish list WS9 and the computation of the bound on WS9 . Consider configuration coll000(Q)
with the queries at positions S9 = {2L, 3R} left out (see Figure 11). For any set of queries that
satisfy this configuration at positions {1L, 3L, 1R, 2R}, the tuple

(a1 ·(u, v, c1), a2 ·(u, v, c1, w), y − a2 ·(u, v, c1, w))

= (a3 ·(u′, v′, c′1), a4 ·(u′, v′, c′1, w′), z − a4 ·(u′, v′, c′1, w′)) .

is added to WS9 . Note that we particularly require y = z.
We split this wish list up into two sets: W=

S9
contains only wishes of which the corresponding

queries at positions 3L, 2R are the same, andW 6=S9
contains only wishes of which the corresponding

queries at positions 3L, 2R are different. Note that by construction, a wish may occur in both
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5 colQ000-S1-left = colQ000-S7-left = colQ100-left

u v wc1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

b c

7 colQ000-S7-right

u′ v′ w′

c′1

A

a3·(u′, v′, c′1)

a4·(u′, v′, c′1, w
′)

z

!a

!c

Fig. 10. Configuration coll000:S7(Q). We require (u, v, w) 6= (u′, v′, w′) and (u, v, c1) = (a1 ·
(u′, v′, c′1), a2 ·(u′, v′, c′1, w′), y − a2 ·(u′, v′, c′1, w′)).

sets, but this does not invalidate the security analysis: it only results in a slightly worse bound.
As before, each element from WS9 can be wished for only once, and we find that the adversary
finds a collision with probability at most

|W=
S9
|+ |W 6=S9

|
2n − q

.

We upper bound the number of solutions to the configuration of Figure 11, restricted to either
3L = 2R and 3L 6= 2R, after q queries.

• 3L = 2R. We have at most q choices for 3L = 2R. For any such choice, by ¬aux3(Qq) we have
at most t2 choices for 1L. The queries at positions 1L and 3L uniquely fix (u, v, c1, w). The
query 3L = 2R fixes y = z. Any choice of queries thus uniquely fixes (a1·(u, v, c1), a2·(u, v, c1, w),
y − a2 ·(u, v, c1, w)). We find |W=

S9
| ≤ t2q.

• 3L 6= 2R. As we require y = z, by ¬aux1(Qq) the configuration has at most t1 choices for

3L, 2R. The remainder is the same, and we find |W 6=S9
| ≤ t1t2.

Hence, in this setting a collision is found with probability at most (t1t2 + t2q)/(2
n − q).

coll000:Sj(Qq) for j = 10, 11, 12. For these cases, the analysis for S4 directly applies.

coll000:S13(Qq). For this case, the analysis for S6 directly applies.

The proof is now completed by adding all bounds in accordance with (8). ut

Lemma 2. Pr (coll100(Qq) ∧ ¬aux(Qq)) ≤ 2q+2t1t2
2n−q .

Proof. Sub-configuration coll100(Qq) is given in Figure 12. Note that here we in particular have
(u, v, c1) = (u′, v′, c′1) as 1L = 1R.

The approach is similar to the one for Lemma 1 and we only highlight the structural differ-
ences. Discarding symmetric cases caused by swapping w and w′, one identifies 4 sets of positions
in which the winning query can appear:

S1 = {2L} , S2 = {3L} , S3 = {2L, 3L} , S4 = {2L, 3R} .

17



6 colQ000-S2-left = colQ000-S9-left = colQ010-left

u v w

c1

A

a3·(u, v, c1)
a4·(u, v, c1, w)

z

a

c

8 colQ000-S9-right

u′ v′ w′

c′1

A

a1·(u′, v′, c′1)

a2·(u′, v′, c′1, w
′)

y

!a

!b

Fig. 11. Configuration coll000:S9(Q). We require (u, v, w) 6= (u′, v′, w′) and (a1 · (u, v, c1), a2 ·
(u, v, c1, w), y − a2 ·(u, v, c1, w)) = (a3 ·(u′, v′, c′1), a4 ·(u′, v′, c′1, w′), z − a4 ·(u′, v′, c′1, w′)).

5 colQ000-S1-left = colQ000-S7-left = colQ100-left

u v wc1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

b c

9 colQ100-right

u v w′c1

A

a1·(u, v, c1)
a2·(u, v, c1, w′)

a3·(u, v, c1)
a4·(u, v, c1, w′)

y z

!b !c

Fig. 12. Configuration coll100(Q). We require w 6= w′.

As before, we find

Pr (coll100(Qq) ∧ ¬aux(Qq)) ≤
4∑
j=1

Pr
(
coll100:Sj (Qq) ∧ ¬aux(Qq)

)
. (9)

coll100:Sj(Qq) for j = 1, 2. Both cases are the same by symmetry, and we consider S1 only.
Consider configuration coll100(Q) with the query at position S1 = {2L} left out. By ¬aux1(Qq),

the configuration has at most t1 choices for 3L, 3R. For any such choice, by ¬aux3(Qq) we have
at most t2 choices for 1L = 1R. (Note that the query at 1L = 1R may be made after the winning
query. This is because in this case “winning query” refers to a winning query for configuration
coll100(Qq). We stress that this does not invalidate the security analysis.) Any such choice fixes
u, v, c1, w

′ (as a44 6= 0), and thus the query at position 2R, and consequently y. The query at
position 1L fixes (u, v, c1) and together with query 3L this fixes w. Any choice of queries thus
uniquely fixes (a1·(u, v, c1), a2·(u, v, c1, w), y− a2·(u, v, c1, w)). We find |WS1 | ≤ t1t2, and hence in
this setting a collision is found with probability at most t1t2/(2

n − q).

coll100:S3(Qq). By construction, there must be a query (k,m, c) in the query history (correspond-
ing to position 1L) that satisfies a1·(k,m, c) = a3·(k,m, c). So the problem shifts to bounding the
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6 colQ000-S2-left = colQ000-S9-left = colQ010-left

u v w

c1

A

a3·(u, v, c1)
a4·(u, v, c1, w)

z

a

c

10 colQ010-right

u′ v′ w′

c′1

A

a3·(u′, v′, c′1)

a4·(u′, v′, c′1, w
′)

z

!a

!c

Fig. 13. Configuration coll010(Q). We require (u, v, w) 6= (u′, v′, w′), a1 ·(u, v, c1) = a1 ·(u′, v′, c′1),
and a3 ·(u, v, c1, w) = a3 ·(u′, v′, c′1, w′).

probability that the adversary ever finds a query (k,m, c) that satisfies this equation. As a12 6= a32

and a13 6= a33, the adversary never obtains such query except with probability at most q/(2n−q).

coll100:S4(Qq). As in the current case we have (u, v, c1) = (u′, v′, c′1), the approach for S3 applies.

The proof is now completed by adding all bounds in accordance with (9). ut

Lemma 3. Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) ≤
t22q+t2q+q+t1t2

2n−q for α1α2α3 ∈ {010, 001}.

Proof. Both cases are the same by symmetry, and we consider α1α2α3 = 010 only. Sub-
configuration coll010(Q) is given in Figure 13. Note that here we in particular have a1·(u, v, c1) =
a1 ·(u′, v′, c′1) and a3 ·(u, v, c1, w) = a3 ·(u′, v′, c′1, w′).

The approach is similar to the one for Lemma 1 and we only highlight the structural differ-
ences. Discarding symmetric cases caused by swapping (u, v, w) and (u′, v′, w′), one identifies 4
sets of positions in which the winning query can appear:

S1 = {1L} , S2 = {3L} , S3 = {1L, 3L} , S4 = {1L, 3R} .

As before, we find

Pr (coll010(Qq) ∧ ¬aux(Qq)) ≤
4∑
j=1

Pr
(
coll010:Sj (Qq) ∧ ¬aux(Qq)

)
. (10)

coll010:S1(Qq). Consider configuration coll010(Q) with the query at position S1 = {1L} left out.
By ¬aux1(Qq), the configuration has at most t1 choices for 3L, 3R. For any such choice, by
¬aux3(Qq) we have at most t2 choices for 1R. Any such choice fixes u′, v′, c′1, w

′ (as a44 6= 0), and
thus the values a1 ·(u, v, c1) = a1 ·(u′, v′, c′1) and a3 ·(u, v, c1, w) = a3 ·(u′, v′, c′1, w′). Together with
the query 3L this fixes (u, v, c1) by invertibility of A. We find |WS1 | ≤ t1t2, and hence in this
setting a collision is found with probability at most t1t2/(2

n − q).

coll010:S2(Qq). Consider configuration coll010(Q) with the query at position S2 = {3L} left out.
We have at most q choices for 2L = 2R. For any such choice, by ¬aux2(Qq) we have at most t2
choices for 1L and at most t2 choices for 1R. Any such choice fixes the query at position 3R,
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and thus z. The query at position 1L fixes (u, v, c1) and together with query 2L this fixes w.
Any choice of queries thus uniquely fixes (a3·(u, v, c1), a4·(u, v, c1, w), z− a4·(u, v, c1, w)). We find
|WS2 | ≤ t22q, and hence in this setting a collision is found with probability at most t22q/(2

n − q).

coll010:S3(Qq). As the winning query (k,m, c) should appear at positions 1L and 3L, we require
it to satisfy k = a3·(k,m, c). Any query satisfies this equation with probability at most 1/(2n− q)
(as a32, a33 6= 0). As the adversary makes at most q queries, in this setting a collision is found
with probability at most q/(2n − q).

coll010:S4(Qq). Consider any query, without loss of generality a forward query on input (k,m).
Note that, as the query appears at positions 1L and 3R, we have k = u = a3 · (u′, v′, c′1) and
m = v = a4 ·(u′, v′, c′1, w′). By ¬aux3(Qq), the configuration has at most t2 choices for 1R. Any
such query fixes (u′, v′, c′1). Recall that, as 2L = 2R, we require a1·(u, v, c1) = a1·(u′, v′, c′1). Now,
the query succeeds only if c1 satisfies this equation, hence with probability at most t2/(2

n − q)
(as a13 6= 0). Exactly the same statement holds for inverse queries (as a12 6= 0). As the adversary
makes at most q queries, in this setting a collision is found with probability at most t2q/(2

n− q).

The proof is now completed by adding all bounds in accordance with (10). ut

Lemma 4. Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) = 0 when α1 + α2 + α3 ≥ 2.

Proof. First suppose α2 = α3 = 1. By design of F 3
A we require A(u, v, c1, w)> = A(u′, v′, c′1, w

′)>.
By invertibility of A this gives (u, v, w) = (u′, v′, w′) and this implies that the collision is trivial.
Now, suppose α1 = α2 = 1 (the case of α1 = α3 = 1 is the same by symmetry). In this case, by
design of F 3

A we have (u, v, c1) = (u′, v′, c′1) (by α1 = 1) and a2·(u, v, c1, w) = a2·(u′, v′, c′1, w′) (by
α2 = 1). As a24 6= 0 this implies w = w′ and thus that the collision is trivial. ut

Lemma 5. Pr (aux(Qq)) ≤ q2

t1(2n−q) + 3 · 2n
(

eq
t2(2n−q)

)t2
.

Proof. Note that aux1(Qq) essentially equals help1(Qq) of [27, Section 3.1], and the proof and
bound directly carry over. The analysis for aux2(Qq), aux3(Qq), and aux4(Qq) essentially equals
the one for help4(Qq) of [27, Section 3.1]. We include the proof for completeness.

It suffices to consider the events Pr (auxk(Qq)) (k = 1, . . . , 4) separately.
aux1(Qq). For i 6= j, the two queries (ki,mi, ci) and (kj ,mj , ci) satisfy mi + ci = mj + cj with
probability at most 1

2n−q . Hence, the expected value E(mi + ci = mj + cj) is at most 1
2n−q , and

consequently

E
(∣∣{(ki,mi, ci), (kj ,mj , cj) ∈ Qq : i 6= j ∧ mi + ci = mj + cj

}∣∣) ≤∑
i 6=j

1

2n − q
≤ q2

2n − q
.

By Markov’s inequality, we obtain

Pr (aux1(Qq)) ≤
q2

t1(2n − q)
. (11)

auxk(Qq) for k ∈ {2, 3, 4}. For the proof to go through we use a12, a13 6= 0 (for aux2(Qq)) and
a32, a33 6= 0 (for aux3(Qq)). The cases are equivalent by symmetry, and we consider aux2(Qq) only.
Let Z ∈ {0, 1}n. Consider the ith query (ki,mi, ci). This query makes equation a1·(ki,mi, ci) = Z
satisfied with probability at most 1

2n−q . More than t2 queries result in a solution with probability

at most
(
q
t2

) (
1

2n−q

)t2
≤
(

eq
t2(2n−q)

)t2
, where we use Stirling’s approximation (t! ≥ (t/e)t for any

t). Considering any possible choice for Z, we obtain for k = 2, 3, 4:

Pr (auxk(Qq)) ≤ 2n
(

eq

t2(2n − q)

)t2
. (12)

The claim is obtained by adding (11-12). ut
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From (7) and the results of Lemmas 1-5 we conclude for advcoll
F 3
A

(q):

advcoll
F 3
A

(q) ≤ 2t22q + 3t2q + 11q + 3t1t
2
2 + 7t1t2

2n − q
+

q2

t1(2n − q)
+ 3 · 2n

(
eq

t2(2n − q)

)t2
.

This completes the proof of Theorem 1.

6 Preimage Resistance of F 3
A

In this section we consider the preimage resistance of F 3
A. Though we do not obtain optimal

preimage resistance—which is impossible to achieve after all, due to the generic bounds of the
pigeonhole-birthday attack (Section 2)—we achieve preimage resistance up to 23n/2 queries, much
better than the preimage bounds on MDC-2 and MDC-4 [27], relatively close to the generic bound.
Yet, for the proof to hold we need to put slightly stronger requirements on A.

• A−

B1
0 0
0 0

B2
0 0
0 0

 is invertible for any B1,B2 ∈
{( 0 0

0 0

)
,
( 1 0

0 0

)
,
( 1 0

0 1

)}
. In the remainder, we write

[
B1

/
B2

]
to denote the subtracted matrix;

• a12, a13, a24, a32, a33, a44 6= 0;
• a12 6= a32, a13 6= a33, and a24 6= a44.

We refer to the logical AND of these requirements as prereq. We remark that prereq⇒ colreq,
and that matrices satisfying prereq are easily found. Simple matrices complying with these
conditions over the field GF (2128) are

0 1 2 0
1 0 0 1
0 2 1 0
0 0 0 2

 ,


0 1 1 0
1 1 0 1
0 2 3 0
1 0 2 2

 . (13)

These are the matrices corresponding to the compression functions of Figure 2. Here, we use
x128+x127+x126+x121+1 as our irreducible polynomial and we represent bit strings as polynomials
in the obvious way (1 = 1, 2 = x, 3 = 1 + x). Note that the choice of matrix A influences the
efficiency of the construction. The first matrix of (13) has as minimal zeroes as possible, which
reduces the amount of computation.

Theorem 2. Let E
$← Bloc(n). Suppose A satisfies prereq. Then, for any positive integral value

t, provided t ≤ q,

advepre
F 3
A

(q) ≤ 6t2 + 18t+ 26

2n − 2
+ 4 · 2n

(
4eq

t2n

)t/2
+ 8q

(
8eq

t2n

) t2n

4q

. (14)

The proof is given in Section 6.1. As for the bound on the collision resistance (Theorem 1), the
idea is to make a smart choice of t to minimize this bound. Let ε > 0 be any parameter. Then,
for t = q1/3, the bound simplifies to

advepre
F 3
A

(q) ≤ 6q2/3 + 18q1/3 + 26

2n − 2
+ 4 · 2n

(
4eq2/3

2n

)q1/3/2

+ 8q

(
8eq2/3

2n

) 2n

4q2/3

.

From this, we find that for any ε > 0 we have

advepre
F 3
A

(23n/2/2nε)→ 0 for n→∞ .
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Preimage resistance

Fig. 14. For n = 128, the function advepre
F 3
A

(q) of (14) for the particular choice of values t (solid

line) and the bound of q2/23n (dashed line). The steepness of our bound is caused by the last
term of (14) which explodes for q approaching t2n due to its decreasing exponent.

Hence, the F 3
A compression function achieves close to 23n/2 preimage security for n → ∞. For

n = 128, the bound on advepre
F 3
A

is depicted in Figure 14. The preimage advantage hits 1/2 for

log2 q ≈ 180.3, relatively close to the threshold 191.5 for q2/23n. For larger values of n this gap
approaches 0.

The result shows that F 3
A with A compliant to prereq satisfies preimage resistance up to about

23n/2 queries. We note that our proof is the best possible for this design, by demonstrating
in Proposition 2 a preimage-finding adversary that with high probability succeeds in at most
O(23n/2) queries.

Proposition 2. Let E
$← Bloc(n). Then, one can expect a preimage for F 3

A after 2 · 23n/2 + 2n

queries.

Proof. Let (y, z) ∈ {0, 1}2n be a range value. Let α ∈ N. The adversary proceeds as follows.

(i) A makes α2n queries to the block cipher corresponding to the bottom-left position of Fig-
ure 4. One expects to find α tuples (k2,m2, c2) that satisfy m2 + c2 = y;

(ii) It repeats the first step for the bottom-right position. One expects to find α tuples (k3,m3, c3)
satisfying m3 + c3 = z;

(iii) By invertibility of A, any choice of (k2,m2, c2) and (k3,m3, c3) uniquely defines a tuple
(u, v, c1, w) for the F 3

A evaluation. Likely, the emerged tuples (u, v, c1) are all different, and
we find about α2 such tuples;

(iv) Varying over all α2 tuples (u, v, c1), query (u, v) to the block cipher. If it responds c1, we
have obtained a preimage for F 3

A.

In the last round one expects to find a preimage if α2/2n = 1, or equivalently if α = 2n/2. The
first and second round both require approximately 23n/2 queries, and the fourth round takes 2n

queries. In total, the attack is done in approximately 2 · 23n/2 + 2n queries. ut

6.1 Proof of Theorem 2

The proof of preimage resistance of F 3
A follows the basic spirit of [27]. Let (y, z) be a range value.

We consider any adversary that has query access to its oracle E and makes q queries stored in a
query history Qq. Its goal is to find a preimage for F 3

A, in which it by definition only succeeds if
it obtains a query history Qq that satisfies configuration pre(Qq) of Figure 15. Formally, pre(Qq)
is set if for some (u, v, w) there exists query tuples (k1,m1, c1), (k2,m2, c2), (k3,m3, c3) ∈ Qq such
that:

1. (k1,m1) = (u, v) and (k2,m2, k3,m3)> = A(u, v, c1, w)>;
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3 preQ-labeled

u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

1L

2L 3L

Fig. 15. Configuration pre(Q). The configuration is satisfied if Q contains three (possibly the
same) queries that satisfy this setting.

2. m2 ⊕ c2 = y;
3. m3 ⊕ c3 = z.

This means,

advepre
F 3
A

(q) = Pr (pre(Qq)) . (15)

Above set of tuples is also called a “solution” to the configuration. We inherit the notation of
Section 5.1. The underlining of y and z means that these are fixed (by the adversary) from the
start. We name the block ciphers 1L, 2L, 3L similarly.
For the analysis of the preimage resistance, we use the idea of free super queries [3,17,19,27]. The
issuance of free super queries is a well-established proof trick for achieving preimage resistance
beyond the birthday bound. If under some key the adversary has made 2n−1 queries to E, it
receives the remaining 2n−1 queries for this key for free. As in [3, 19], we call this query a super
query. Free queries can be formalized as queries the adversary is forced to make, but for which
it will not be charged. For convenience, we use Qq to denote the query history after q normal
queries: it thus contains all normal queries plus all super queries made so far. A super query is a
set of 2n−1 single queries, and any query in the query history is either a normal query or a part of
a super query, but not both. Notice that at most q/2n−1 super queries will occur: the adversary
makes q queries, and needs 2n−1 queries as preparatory work to enforce one super query.

For the analysis of Pr (pre(Qq)) we introduce an auxiliary event aux(Qq). Let t > 0 be any
integral value. We define aux(Qq) = aux2(Qq) ∨ · · · ∨ aux5(Qq), where

aux2(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : a1 ·(ki,mi, ci) = Z

}∣∣ > t ;

aux3(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : a3 ·(ki,mi, ci) = Z

}∣∣ > t ;

aux4(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : mi + ci = Z

}∣∣ > t ;

aux5(Qq) : maxZ∈{0,1}n
∣∣{(ki,mi, ci) ∈ Qq : a1 ·(ki,mi, ci)− a3 ·(ki,mi, ci) = Z

}∣∣ > t .

Note that aux2(Qq), aux3(Qq), aux4(Qq) equal the ones of Section 5.1, but we reintroduce them
for convenience. By basic probability theory, we obtain for (15):

Pr (pre(Qq)) ≤ Pr (pre(Qq) ∧ ¬aux(Qq)) + Pr (aux(Qq)) . (16)

Probability Pr (pre(Qq) ∧ ¬aux(Qq)) is bounded in Lemma 6. A bound on Pr (aux(Qq)) is derived
in Lemma 7.
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Lemma 6. Pr (pre(Qq) ∧ ¬aux(Qq)) ≤ 6t2+18t+26
2n−2 .

Proof. We consider the probability of the adversary finding a solution to configuration pre(Qq) of
Figure 15 such that Qq satisfies ¬aux(Qq). The proof shows similarities with the proof of Lemma 1.
Consider the ith query, for i ∈ {1, . . . , q}. We say this (normal or super) query is a winning query
if it makes pre(Qi) ∧ ¬aux(Qi) satisfied for some set of other queries in the query history Qi−1.
We can assume the ith query does not make aux(Qi) satisfied: if it would, by definition it cannot
be a winning query. It may be the case that a winning query appears at two or three positions in
the configuration. In more detail, one can identify the following 7 sets of positions in which the
winning query can appear:

S1 = {1L} , S4 = {1L, 2L} , S7 = {1L, 2L, 3L} ,
S2 = {2L} , S5 = {1L, 3L} ,
S3 = {3L} , S6 = {2L, 3L} .

For j = 1, . . . , 7 we denote by preSj (Qq) configuration pre(Qq) with the restriction that the
winning query must appear at the positions in Sj . Recall that a winning query may consist of
different queries if it is a super query. By basic probability theory,

Pr (pre(Qq) ∧ ¬aux(Qq)) ≤
7∑
j=1

Pr
(
preSj (Qq) ∧ ¬aux(Qq)

)
. (17)

preS1(Qq). In this case, the winning query may be a normal query or a super query. As is done
in the proof of Lemma 1, we use wish lists for the analysis. Consider configuration pre(Qq) with
the query at position S1 = {1L} left out (see Figure 16). For any pair of queries that satisfy this
configuration at positions {2L, 3L}, the tuple (u, v, c1) is added to WS1 . Note that this tuple is
uniquely determined by the queries at 2L and 3L by invertibility of A.

12 preQ-S1

u v wc1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

Fig. 16. Configuration preS1
(Q).

13 preQ-S2

u v w

c1

A

a3·(u, v, c1)
a4·(u, v, c1, w)

z

Fig. 17. Configuration preS2
(Q).

As before, as the winning query only occurs at S1, we can assume a query never adds itself
to a wish list. In order to find a preimage for F 3

A in this sub-configuration the adversary needs to
get a wish granted at least once. The adversary can make each wish at most once. Note that it
can make multiple wishes at the same time (in case of super queries), but this does not invalidate
the analysis. Suppose the adversary makes a query E(k,m) where (k,m, c) ∈ WS1 for some c. If
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the query is a normal query, the answer is drawn uniformly at random from a set of size at least
2n−1. If, on the other hand, this wish is a part of a super query, the answer is generated from
a set of size 2n−1. In both cases, the wish is granted with probability at most 1/2n−1 (and the
same for inverse queries). Thus, by construction, in this setting the adversary finds a preimage

with probability at most
|WS1

|
2n−1 .

Now, it suffices to upper bound the size of the wish listWS1 after q queries, and to this end we
bound the number of solutions to the configuration of Figure 16. By ¬aux4(Qq), the configuration
has at most t choices for 2L and at most t choices for 3L. For any such choice, the queries
at positions 2L and 3L uniquely fix (u, v, c1). We find |WS1 | ≤ t2, and hence in this setting a
preimage is found with probability at most t2/2n−1.

preSj(Qq) for j = 2, 3. Both cases are the same by symmetry, and we consider S2 only.

The analysis is similar to the one for S1, and we only present the computation of the bound
on the wish list WS2 after q queries. Consider configuration pre(Qq) with the query at position
S2 = {2L} left out (see Figure 17). By ¬aux4(Qq), the configuration has at most t choices for 3L.
For any such choice, by ¬aux3(Qq) we have at most t choices for 1L. The query at position 1L
fixes (u, v, c1) and together with query 3L this fixes w (as a44 6= 0). Any choice of queries thus
uniquely fixes (a1 ·(u, v, c1), a2 ·(u, v, c1, w), y − a2 ·(u, v, c1, w)). We find |WS2 | ≤ t2, and hence in
this setting a preimage is found with probability at most t2/2n−1.

preSj(Qq) for j = 4, 5. Both cases are the same by symmetry, and we consider S4 only.

We make the distinction between whether or not the two queries at positions S4 = {1L, 2L}
are the same (normal or super query), or are different (super query).

• 1L = 2L. In this case, the wish list contains tuples of the form (k,m, c) that by construction
are required to satisfy k = a1·(k,m, c) and m = a2·(k,m, c, w) for some w. As was the case with
S1, each wish is granted with probability at most 1/2n−1. By ¬aux4(Qq), the configuration
has at most t choices for 3L. For any such choice, this query fixes values a3 · (k,m, c) and
a4 · (k,m, c, w). Together with the equations on a1 and a2 this uniquely fixes (k,m, c) by

invertibility of A−
[( 1 0

0 1

)/( 0 0
0 0

)]
. We find |WS4 | ≤ t, and hence in this setting a preimage is

found with probability at most t/2n−1.

• 1L 6= 2L. In this case, the wish list contains tuples of the form (k,m1, c1,m2, c2), where
(k,m1, c1) is the wished query at 1L and (k,m2, c2) is the wished query at 2L. By construction,
these tuples are required to satisfy k = a1 ·(k,m1, c1) and m2 = a2 ·(k,m1, c1, w) for some w.
Additionally the wish is required to satisfy m2 + c2 = y. As in a super query the answers are
generated from a set of size 2n−1, a wish is granted with probability at most 1

2n−1(2n−1−1)
.

Thus, by construction, in this setting the adversary finds a preimage with probability at most

|WS4 |
2n−1(2n−1 − 1)

.

By ¬aux4(Qq), the configuration has at most t choices for 3L. For any such choice, this query
fixes values a3·(k,m1, c1) and a4·(k,m1, c1, w). We have 2n choices for c2. This uniquely fixes m2.

Now, this uniquely fixes (k,m1, c1) by invertibility of A−
[( 1 0

0 0

)/( 0 0
0 0

)]
. We find |WS4 | ≤ t2n,

and hence in this setting a preimage is found with probability at most t2n

2n−1(2n−1−1)
.

preS6(Qq). We make the distinction between whether or not the two queries at positions S6 =
{2L, 3L} are the same (normal or super query), or are different (super query).

• 2L = 3L. In this case, the wish list contains tuples of the form (k,m, c) that by construction
are required to satisfy k = a1·(u, v, c1) = a3·(u, v, c1), and m = a2·(u, v, c1, w) = a4·(u, v, c1, w)
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for some u, v, c1, w. Additionally the wish is required to satisfy m + c = y = z. As was the
case with S1, each wish is granted with probability at most 1/2n−1.
By ¬aux5(Qq), noting that a1·(u, v, c1) = a3·(u, v, c1), the configuration has at most t choices for
1L. For any such choice, this query fixes values (u, v, c1), and thus k. Equation a2·(u, v, c1, w) =
a4·(u, v, c1, w) fixes w (as a24 6= a44), and thus m. Using m+c = y this uniquely fixes (k,m, c).
We find |WS6 | ≤ t, and hence in this setting a preimage is found with probability at most
t/2n−1.
• 2L 6= 3L. In this case, the wish list contains tuples of the form (k,m2, c2,m3, c3), where

(k,m2, c2) is the wished query at 2L and (k,m3, c3) is the wished query at 3L. By construction,
these tuples are required to satisfy k = a1 ·(u, v, c1) = a3 ·(u, v, c1), m2 = a2 ·(u, v, c1, w), and
m3 = a4·(u, v, c1, w) for some u, v, c1, w. Additionally the wish is required to satisfy m2+c2 = y
and m3 + c3 = z. As before, in this setting the adversary finds a preimage with probability at
most

|WS6 |
2n−1(2n−1 − 1)

.

By ¬aux5(Qq), noting that a1·(u, v, c1) = a3·(u, v, c1), the configuration has at most t choices for
1L. For any such choice, this query fixes values (u, v, c1) and thus k. We have 2n choices for c3.
This uniquely fixes m3. This uniquely fixes w, and subsequently m2 and c2. We find |WS6 | ≤
t2n, and hence in this setting a preimage is found with probability at most t2n

2n−1(2n−1−1)
.

preS7(Qq). We make the following distinction: 1L = 2L = 3L, 1L = 2L 6= 3L, 1L = 3L 6= 2L,
2L = 3L 6= 1L, and {1L, 2L, 3L} all different.

• 1L = 2L = 3L. In this case, the wish list contains tuples of the form (k,m, c) that by
construction are required to satisfy k = a1 ·(k,m, c) = a3 ·(k,m, c) and m = a2 ·(k,m, c, w) =
a4 ·(k,m, c, w) for some w. These equations uniquely determine (k,m, c, w) by invertibility of

A −
[( 1 0

0 1

)/( 1 0
0 1

)]
, and we find |WS1 | = 1. Hence, in this setting a preimage is found with

probability at most 1/2n−1.
• 1L = 2L 6= 3L or 1L = 3L 6= 2L. Both cases are the same by symmetry, and we consider

1L = 2L 6= 3L only.
In this case, the wish list contains tuples of the form (k,m, c,m3, c3), where (k,m, c) is the
wished query at 1L = 2L and (k,m3, c3) is the wished query at 3L. By construction, these
tuples are required to satisfy k = a1 ·(k,m, c) = a3 ·(k,m, c), m = a2 ·(k,m, c, w), and m3 =
a4·(k,m, c, w) for some w. Additionally the wish is required to satisfy m+c = y and m3+c3 = z.
As before, in this setting the adversary finds a preimage with probability at most

|WS7 |
2n−1(2n−1 − 1)

.

We have 2n choices for c3. This uniquely fixes m3. This uniquely fixes (k,m, c) by invertibility

of A−
[( 1 0

0 1

)/( 1 0
0 0

)]
. We find |WS7 | ≤ 2n, and hence in this setting a preimage is found with

probability at most 2n

2n−1(2n−1−1)
.

• 2L = 3L 6= 1L. In this case, the wish list contains tuples of the form (k,m1, c1,m, c),
where (k,m1, c1) is the wished query at 1L and (k,m, c) is the wished query at 2L = 3L.
By construction, these tuples are required to satisfy k = a1 ·(k,m1, c1) = a3 ·(k,m1, c1) and
m = a2·(k,m1, c1, w) = a4·(k,m1, c1, w) for some w. Additionally the wish is required to satisfy
m + c = y = z. As before, in this setting the adversary finds a preimage with probability at
most

|WS7 |
2n−1(2n−1 − 1)

.
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We have 2n choices for c. This uniquely fixes m. This uniquely fixes (k,m1, c1) by invertibility

of A−
[( 1 0

0 0

)/( 1 0
0 0

)]
. We find |WS7 | ≤ 2n, and hence in this setting a preimage is found with

probability at most 2n

2n−1(2n−1−1)
.

• {1L, 2L, 3L} all different. In this case, the wish list contains tuples of the form (k,m1, c1,
m2, c2,m3, c3), where (k,m1, c1) is the wished query at 1L, (k,m2, c2) is the wished query at
2L, and (k,m3, c3) is the wished query at 3L. By construction, these tuples are required to
satisfy k = a1·(k,m1, c1) = a3·(k,m1, c1), m2 = a2·(k,m1, c1, w), and m3 = a4·(k,m1, c1, w) for
some w. Additionally the wish is required to satisfy m2 + c2 = y and m3 + c3 = z. As before,
in this setting the adversary finds a preimage with probability at most

|WS7 |
2n−1(2n−1 − 1)(2n−1 − 2)

.

We have 2n choices for both c2 and c3. These uniquely fix m2 and m3. Any such choice

uniquely fixes (k,m1, c1) by invertibility of A −
[( 1 0

0 0

)/( 1 0
0 0

)]
. We find |WS7 | ≤ 2n(2n − 1),

and hence in this setting a preimage is found with probability at most 22n

2n−1(2n−1−1)(2n−1−2)
.

The proof is now completed by adding and simplifying all bounds in accordance with (17):

Pr (pre(Qq) ∧ ¬aux(Qq)) ≤
3t2 + 3t+ 1

2n−1
+

(3t+ 3)2n

2n−1(2n−1 − 1)
+

22n

2n−1(2n−1 − 1)(2n−1 − 2)

≤ 6t2 + 18t+ 26

2n − 2
,

where we use that 1/(2n−1 − 2) ≤ 3/2n for n ≥ 4. ut

Lemma 7. Provided t ≤ q, we have Pr (aux(Qq)) ≤ 4 · 2n
(

4eq
t2n

)t/2
+ 4 · 2q

(
8eq
t2n

) t2n

4q
.

Proof. Note that aux2(Qq), . . . , aux5(Qq) essentially equal help3(Qq) of [27, Section 4.1], and the
proof and bound directly carries over. We include the proof for completeness.

It suffices to consider the events Pr (auxk(Qq)) (k = 2, . . . , 5) separately. For the proof to
go through we use a12, a13 6= 0 (for aux2(Qq)), a32, a33 6= 0 (for aux3(Qq)), and a12 6= a32 and
a13 6= a33 (for aux5(Qq)). The cases are equivalent by symmetry, and we consider aux2(Qq) only.

Let Z ∈ {0, 1}n. Denote by Q
(n)
q the restriction of Qq to normal queries, and by Q

(s)
q the

restriction of Qq to queries that belong to super queries. In order for Qq to have more than t
solutions to a1 ·(ki,mi, ci) = Z, at least one of the following criteria needs to hold:

1. Q
(n)
q has more than t/2 solutions;

2. Q
(s)
q has more than t/2 solutions.

We consider these two scenarios separately. In case of normal queries, each query (ki,mi, ci) is
answered with a value generated at random from a set of size at least 2n−1, and hence it satisfies
a1·(ki,mi, ci) = Z with probability at most 1

2n−1 = 2
2n . More than t/2 queries result in a solution

with probability at most
( q
t/2

) (
2

2n

)t/2 ≤ ( 4eq
t2n

)t/2
.

The analysis for super queries is more elaborate. In order for Q
(s)
q to have more than t/2

solutions, as at most q/2n−1 super queries occur, at least one of the super queries needs to
provide more than t′ := t

2q/2n−1 = t2n

4q solutions. Consider any super query, consisting of 2n−1

queries. It provides more than t′ solutions with probability at most(
2n−1

t′

) t′−1∏
j=0

1

2n−1 − j
≤
(

2n−1

t′

)(
1

2n−1 − t′

)t′
≤
(

e2n−1

t′(2n−1 − t′)

)t′
.
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Provided t ≤ q, we have t′ = t2n

4q ≤ 2n−2, and thus 1
2n−1−t′ ≤

1
2n−2 . Consequently, this super query

adds more than t2n

4q solutions with probability at most
(

8eq
t2n

) t2n

4q
. In order to cover any super

query, we need to multiply this probability with q/2n−1.

Considering any possibly choice for Z, we obtain for k = 2, . . . , 5:

Pr (auxk(Qq)) ≤ 2n
(

4eq

t2n

)t/2
+ 2n · q

2n−1

(
8eq

t2n

) t2n

4q

.

The claim is obtained by multiplying this equation with 4. ut

From (15-16) and Lemmas 6-7 we conclude for advepre
F 3
A

(q):

advepre
F 3
A

(q) ≤ 6t2 + 18t+ 26

2n − 2
+ 4 · 2n

(
4eq

t2n

)t/2
+ 8q

(
8eq

t2n

) t2n

4q

.

This completes the proof of Theorem 2.

7 Indifferentiability of F 3
A

For the indifferentiability results, it suffices to pose a much weaker condition on A. In detail,
we require the following from A (called indreq): A is invertible and a12, a13, a24, a32, a33, a44 6= 0.
As prereq ⇒ colreq ⇒ indreq, our results particularly apply to all schemes proven secure in
Sections 5-6. Differentiability is discussed in Section 7.1, and indifferentiability in Section 7.2.

Suiting the analysis, we define a function getw that, on input of j ∈ {2, 4}, m ∈ {0, 1}n, and
(k1,m1, c1) ∈ {0, 1}3n, outputs w such that aj ·(k1,m1, c1, w) = m. Note that a24, a44 6= 0 implies
uniqueness of w.

7.1 Differentiability

In Proposition 3 we show that F 3
A is differentiable from a random oracle in at most about 2n/2

queries.

Proposition 3. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random compression

function. For any simulator S that makes at most qS queries to R, there exists a distinguisher D
that makes 2n/2 + 2 queries to its oracles, such that

adviff
F 3
A ,S

(D) ≥ 1

2
− 1

2n/2+1
− qS + 1

2n − qS
.

Proof. Recall that D has access to either (F 3
A, E) (in the real world) or (R,S) (in the ideal world).

Our distinguisher D aims at finding two different evaluations of F 3
A with the same key inputs to

the second (or third) block cipher call. In more detail, the distinguisher aims at finding two
distinct block cipher calls (k1,m1, c1) and (k′1,m

′
1, c
′
1) such that for j ∈ {1, 3}:

aj ·(k1,m1, c1) = aj ·(k′1,m′1, c′1) . (18)

Note that in the real world, for F 3
A, such collisions are expected to be found in about 2n/2 queries

to E (here we use that a12, a13, a32, a33 6= 0). If the distinguisher eventually finds a collision as in
(18), then for any m ∈ {0, 1}n, the following condition naturally holds in the real world:

y = y′ if j = 1 and z = z′ if j = 3 , (19)
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where

(y, z) = F 3
A(k1,m1, getw(j + 1,m, k1,m1, c1)) ,

(y′, z′) = F 3
A(k′1,m

′
1, getw(j + 1,m, k′1,m

′
1, c
′
1)) .

In the random world, with F 3
A replaced by R, this equation only holds with small probability.

Note that the simulator never learns the value m, yet, it may simply try to avoid collisions as in
(18). However, in this case, the responses from S are too biased, which allows the distinguisher
to succeed.

Formally, the distinguisher D proceeds as follows.

(i) D makes 2n/2 queries to its right oracle R for different key and different message values,
obtaining 2n/2 distinct tuples (k1,m1, c1);

(ii) If there is no solution to (18), D returns 1;
(iii) Let j ∈ {1, 3} and (k1,m1, c1) and (k′1,m

′
1, c
′
1) be such that (18) is satisfied;

(iv) Take m
$← {0, 1}n. If (19) holds, D returns 0, and otherwise it returns 1.

Distinguisher D succeeds except in the following two cases: “C1” it is conversing with the real
world and (18) does not have a solution (which means that his guess in step (ii) is wrong), or
“C2” it is conversing with the simulated world and (19) holds (which means that his guess in
step (iv) is wrong). Therefore, adviff

F 3
A ,S

(D) ≥ 1−Pr (C1)−Pr (C2). Regarding C1: note that all

queries are made with different key inputs, and E is a random cipher. Therefore, all responses
are randomly drawn from a set of size 2n, and a collision (18) occurs with probability at least(

2n/2

2

)
1

2n (as a12, a13, a32, a33 6= 0). Thus,

Pr (C1) ≤ 1−
(

2n/2

2

)
1

2n
=

1

2
+

1

2n/2+1
.

Regarding C2, denote by E the event that S ever queries R(k1,m1, getw(j + 1,m, k1,m1, c1)).
Then,

Pr (C2) ≤ Pr (C2 | ¬E) + Pr (E) ≤ 1

2n − qS
+

qS
2n − (qS − 1)

=
qS + 1

2n − qS
,

where we use that a24, a44 6= 0. This completes the proof. ut

7.2 Indifferentiability

We prove that F 3
A is indifferentiable from a random function up to about 2n/2 queries. Together

with the lower bound of Section 7.1 this implies tightness.

Theorem 3. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random function. There

exists a simulator S such that for any distinguisher D that makes at most qL left queries and qR
right queries,

adviff
F 3
A ,S

(D) ≤ 7(3qL + qR)2

2n
,

where S makes qS ≤ qR queries to R.

Recall that we consider D to have access to either (F 3
A, E) (in the real world) or (R,S) (in the

ideal world). The simulator S used in the proof mimics the behavior of random cipher E such
that queries to S and queries to R are consistent, which means that relations among the query
outputs in the real world hold in the simulated world as well. In the remainder of the section, we
first introduce our simulator and accommodate it with an intuition, and next present the formal
proof.
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Simulator Intuition

For k ∈ {0, 1}n, the simulator maintains an initially empty list LE[k]. In this list, it stores tuples
(m, c) such that S(k,m) = c. We write LE+[k] for all input values m and LE−[k] for all output
values c. Sometimes, we abuse notation and write (k,m, c) ∈ LE to denote that (m, c) ∈ LE[k].

The F 3
A class of functions is based on the key principle that any two block cipher evaluations

define the inputs to the third one (using invertibility of A). The simulator we use for the proof of
Theorem 3 enormously benefits from some of these characteristics. In more detail, the simulator
is given in Figure 18.

Apart from the if -clause of lines 02-06, the simulator identically mimics an ideal cipher. In this
particular clause, the simulator checks whether a query (k,m) may appear in an F 3

A evaluation
(see Figure 4) as a bottom query (left or right) for some other query appearing in the top. In
more detail, this happens if (k,m) = (aj ·(k1,m1, c1), aj+1·(k1,m1, c1, w)) for some j ∈ {1, 3} and
some earlier query (k1,m1, c1) ∈ LE. In this case, the simulator should consult R to derive the
query response.5 At a higher level, the simulator is based on the idea that, with high probability,
a distinguisher can only compare (F 3

A, E) and (R,S) if it makes the queries to E/S “in correct
order”: for any evaluation of F 3

A that can be derived from LE, the top query is made prior to the
two bottom queries.

Forward Query S(k,m)

00 if LE+[k](m) 6= ⊥ return c = LE+[k](m)

01 c
$← {0, 1}n\LE+[k]

02 if ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1)

03 w ← getw(j + 1,m, k1,m1, c1)

04 (y, z)←R(k1,m1, w)

05 c← m+ (y[j = 1] + z[j = 3])

06 end if

07 return LE+[k](m)← c

Inverse Query S−1(k, c)

10 if LE−[k](c) 6= ⊥ return m = LE−[k](c)

11 m
$← {0, 1}n\LE−[k]

12 return LE−[k](c)← m

Fig. 18. The simulator S for E used in the proof of Theorem 3. See footnote 5 regarding the case
where there is more than one solution to the if-clause of line 02.

Proof of Theorem 3

We formally prove Theorem 3. Let S be the simulator of Figure 18, and let D be any distinguisher
that makes at most qL left queries and qR right queries. Note that S makes qS ≤ qR queries. By
Definition 3, the goal is to bound:

adviff
F 3
A ,S

(D) =
∣∣∣Pr

(
DF 3

A ,E = 1
)
−Pr

(
DR,S = 1

)∣∣∣ . (20)

As a first step, we apply a PRP-PRF switch to both worlds. More formally, we define Ẽ as E
with the difference that all responses are randomly drawn from {0, 1}n. Similarly, S̃ is defined as
S of Figure 18 with the difference that random sampling from {0, 1}n is done in lines 01 and 11.
Now, ∣∣∣Pr

(
DF 3

A ,E = 1
)
−Pr

(
DF 3

A ,Ẽ = 1
)∣∣∣ ≤ (3qL + qR)2

2n+1
,

5 Note that if there are two different solutions that make the condition of the if-clause satisfied, the simulator will
naturally never be able to maintain consistency with the random cipher. This event will later be considered as
a bad event. If this happens, the simulator will simply take any of the solutions and execute the if-clause based
on that solution. This design decision is merely for simplicity; the simulator can just as well abort.
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and ∣∣∣Pr
(
DR,S̃ = 1

)
−Pr

(
DR,S = 1

)∣∣∣ ≤ q2
R

2n+1
,

and we obtain for (20):6

adviff
F 3
A ,S

(D) ≤
∣∣∣Pr

(
DF 3

A ,Ẽ = 1
)
−Pr

(
DR,S̃ = 1

)∣∣∣+
(3qL + qR)2

2n
. (21)

It remains to analyze the probability ofD to distinguish (F 3
A, Ẽ) from (R, S̃). Abusing notation, we

remain calling these worlds the real and simulated world. These worlds are described in Figure 19.
Here, in both worlds, LE represents an initially empty list of all right oracle queries, and in the
simulated world only we furthermore use LR as an initially empty list of all left oracle queries.

Let event cond(LE) be defined as follows:

cond(LE) =

 ∃ j, j′ ∈ {1, 3}, (k,m, c), (k′,m′, c′) ∈ LE :

(k,m, c) newer than (k′,m′, c′) and

aj ·(k,m, c) ∈ {k, k′, aj′ ·(k′,m′, c′)}

 . (22)

Event cond(LE) covers the case of two distinct top queries that result to the same key input
to two bottom queries, as well as the case of a top query accidentally hitting the key k′ of a
bottom query (which may be the equal to the top query). Particularly, as long as ¬cond(LE),
the condition in line 42 of Figure 19 is always satisfied by at most one (j, (k1,m1, c1)). In the
remainder, we prove in Lemma 8 that (F 3

A, Ẽ) and (R, S̃) are perfectly indistinguishable as long
as cond(LE) does not occur in both worlds. Then, in Lemma 9 we prove that cond(LE) occurs

in the real world with probability at most 3(3qL+qR)2

2n and in the simulated world with probability

at most
3q2

R
2n . Together with (21), this completes the proof.

Lemma 8. As long as ¬cond(LE), (F 3
A, Ẽ) from (R, S̃) are perfectly indistinguishable.

Proof. We consider any query made by the distinguisher, either to the left oracle L (either F 3
A or

R) and the right oracle R/R−1 (either Ẽ/Ẽ−1 or S̃/S̃−1), and show that the query responses are
equally distributed in both worlds (irrespectively of the query history). Without loss of generality,
we consider new queries only: if the distinguisher makes a repetitive query, the answer is known
and identically distributed in both worlds.

L-query (u, v, w). We make the following distinction:

1. LE+[u](v) = ⊥. In the real world, this means that the first cipher call Ẽ(u, v) is new, and
answered with a fresh value. As cond(LE) does not occur, also the second and third call,
Ẽ(k2,m2) and Ẽ(k3,m3), are fresh, and both their responses are drawn from {0, 1}n. Regard-
ing the simulated world, by the condition “LE+[u](v) = ⊥,” S̃ has never queried R on input
of (u, v, w). Indeed, it had only queried R if the condition of line 42 was satisfied for some
j ∈ {1, 3} and existing (u, v, c1) ∈ LE. Thus, also in this world the response is randomly
generated from {0, 1}2n;

2. LE+[u](v) 6= ⊥. Note that in the real world, this element could have been added to LE via
D or via F 3

A. Let c1 = LE+[u](v), and write (k2,m2) = (a1 · (u, v, c1), a2 · (u, v, c1, w)) and
(k3,m3) = (a3 ·(u, v, c1), a4 ·(u, v, c1, w)). We make the following distinction:

6 Technically, we could have taken S̃ as our simulator, therewith obtaining an improved indifferentiability bound
for Theorem 3. However, for clarity and ease of presentation, we opted for simulator S.
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Query F 3
A (u, v, w)

00 c1 ← Ẽ(u, v)

01 k2 ← a1 ·(u, v, c1)

02 m2 ← a2 ·(u, v, c1, w)

03 y ← Ẽ(k2,m2) +m2

04 k3 ← a3 ·(u, v, c1)

05 m3 ← a4 ·(u, v, c1, w)

06 z ← Ẽ(k3,m3) +m3

07 return (y, z)

Query Ẽ(k,m)

10 if LE+[k](m) 6= ⊥ return c = LE+[k](m)

11 c
$← {0, 1}n

12 return LE+[k](m)← c

Query Ẽ−1(k, c)

20 if LE−[k](c) 6= ⊥ return m = LE−[k](c)

21 m
$← {0, 1}n

22 return LE−[k](c)← m

Query R(u, v, w)

30 if LR(u, v, w) 6= ⊥ return (y, z) = LR(u, v, w)

31 (y, z)
$← {0, 1}2n

32 return LR(u, v, w)← (y, z)

Query S̃(k,m)

40 if LE+[k](m) 6= ⊥ return c = LE+[k](m)

41 c
$← {0, 1}n

42 if ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1)

43 w ← getw(j + 1,m, k1,m1, c1)

44 (y, z)←R(k1,m1, w)

45 c← m+ (y[j = 1] + z[j = 3])

46 end if

47 return LE+[k](m)← c

Query S̃−1(k, c)

50 if LE−[k](c) 6= ⊥ return m = LE−[k](c)

51 m
$← {0, 1}n

52 return LE−[k](c)← m

Fig. 19. The worlds (F 3
A, Ẽ) (left) and (R, S̃) (right).

• LE+[k2](m2) = ⊥ and LE+[k3](m3) = ⊥. In the real world, the answers to the queries
Ẽ(k2,m2) and Ẽ(k3,m3) are both fresh and randomly drawn from {0, 1}n. Regarding the
simulated world, by contradiction we prove that R(u, v, w) has never been queried before
by S̃. Indeed, suppose it has been queried before. This necessarily means that there exist
j ∈ {1, 3} and (u, v, c1) ∈ LE such that aj ·(u, v, c1) = k′ and w = getw(j + 1,m′, u, v, c1)
for some (k′,m′, c′) ∈ LE. The former implies k′ = k2[j = 1] + k3[j = 3], and the latter
implies m′ = aj+1 ·(u, v, c1, w) and thus m′ = m2[j = 1] +m3[j = 3]. This contradicts the
condition that (k2,m2) and (k3,m3) are not in LE. Therefore, the query (u, v, w) to R is
new, and the response is randomly drawn from {0, 1}2n;
• LE+[k2](m2) 6= ⊥ and/or LE+[k3](m3) 6= ⊥. Without loss of generality, assume the former

and write c2 = LE+[k2](m2). In the real world, this query could not have been made in an
earlier evaluation of F 3

A (by virtue of cond(LE)). Therefore, the distinguisher must have
made this query, and particular knows y = c2 + m2, which is the left half of the query
response. In the simulated world, a similar story applies: by ¬cond(LE), this query to S̃
must have been made after (u, v, c1), and thus, the response value c2 equals m + y by
line 45, where y equals the left half of R(u, v, w). Thus also in this case, the distinguisher
knows the left half of the query response.
If also LE+[k3](m3) 6= ⊥, the same reasoning applies to z, the second half of the query
response. On the other hand, in case LE+[k3](m3) = ⊥, the previous bullet carries over
to the z-part.

R-query (k,m). We make the following distinction:

1. ¬ ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1). In the simulated world, the response is
randomly drawn from {0, 1}n by construction. Regarding the real world, first assume (k,m)
has never been queried to Ẽ via a query to F 3

A. Then, the response is clearly fresh and

randomly drawn from {0, 1}n. However, it may be the case that the Ẽ-query could have been
triggered by an earlier F 3

A-query. However, by the condition, it could have impossibly appeared
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in such evaluation as a bottom left/right query. It may have appeared as a top query in an
F 3
A evaluation, which means that (k,m,w) has been queried to F 3

A for some w. However, in
this setting, the adversary never learnt c1, and thus the response to the R-query appears
completely randomly drawn from {0, 1}n;

2. ∃ j ∈ {1, 3}, (k1,m1, c1) ∈ LE : k = aj ·(k1,m1, c1). By ¬cond(LE), these values are unique.
Let w = getw(j+1,m, k1,m1, c1). In the simulated world, the response c is defined as m+y (if
j = 1) or m+z (if j = 3), where (y, z) = R(k1,m1, w). Clearly, if the distinguisher has queried
R(k1,m1, w) before, it knows the response in advance. Otherwise, it is randomly drawn from
{0, 1}n by construction. Regarding the real world, the same reasoning applies: either the query
is new, or it must have appeared as a bottom query (left if j = 1, right if j = 3) of an earlier
F 3
A evaluation (by ¬cond(LE)), in which case the distinguisher knows the response.

R−1-query (k, c). In the simulated world, queries are always answered with a random an-
swer from {0, 1}n. In the real world, this is also the case, except if a certain query (k,m) with
LE+[k](m) = c has ever been triggered via a call to F 3

A. However, in this case, the response will
still appear completely random to the distinguisher, similar to the first item of forward queries
to R. ut

Lemma 9. Pr
(
cond(LE) for (F 3

A, Ẽ)
)
≤ 3(3qL+qR)2

2n and Pr
(
cond(LE) for (R, S̃)

)
≤ 3q2

R
2n .

Proof. We start with the real world (F 3
A, Ẽ). At the end of the proof, we highlight the differences

that give rise to the bound for the simulated world (R, S̃).
Let 1 ≤ i ≤ 3qL + qR, and denote by LEi the set LE after the ith query. We assume

¬cond(LEi−1) and consider the probability cond(LEi) gets satisfied. More detailed, we consider
the probability that the ith query makes the condition satisfied for some j, j′ ∈ {1, 3} and some
earlier query (k′,m′, c′) ∈ LE. Note that cond(LEi) can only be triggered by the values derived
in lines 11 and 21. In fact, these values are always randomly generated from {0, 1}n.

Decomposing cond(LEi), the ith query satisfies the condition if it satisfies any of the following
three:

aj ·(k,m, c) = k for j ∈ {1, 3} ,
aj ·(k,m, c) = k′ for j ∈ {1, 3} and (k′,m′, c′) ∈ LEi−1 ,

aj ·(k,m, c) = aj′ ·(k′,m′, c′) for j, j′ ∈ {1, 3} and (k′,m′, c′) ∈ LEi−1 .

Therefore, cond(LEi) gets satisfied with probability at most 6(i−1)+2
2n (as a12, a13, a32, a33 6= 0).

We thus find:

Pr (cond(LE)) ≤
3qL+qR∑
i=1

Pr (cond(LEi) | ¬cond(LEi−1)) ≤
3qL+qR∑
i=1

6(i− 1) + 2

2n
≤ 3(3qL + qR)2

2n
.

Now, for the simulated world, first note that 1 ≤ i ≤ qR. In this setting, cond(LEi) can only
be triggered by the values derived in lines 41, 45, and 51. We remark that in line 45, the value c
is indeed always a random n-bit value by ¬cond(LEi−1). ut

8 Conclusions

In the area of double block length hashing, where a 3n-to-2n-bit compression function is con-
structed from n-bit block ciphers, all optimally secure constructions known in the literature
employ a block cipher with 2n-bit key space. We have reconsidered the principle of double length
hashing, focusing on double length hashing from a block cipher with n-bit message and key space.
Unlike in the DBL2n class, we demonstrate that there does not exist any optimally secure design
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with reasonably simple finalization function that makes two cipher calls. By allowing one extra
call, optimal collision resistance can nevertheless be achieved, as we have proven by introducing
our family of designs F 3

A.

In our quest for optimal collision secure compression function designs, we had to resort to
designs with three block cipher calls rather than two, which moreover are not parallelizable.
This entails an efficiency loss compared to MDC-2, MJH, and Jetchev et al.’s construction. On
the other hand, our family of functions is based on simple arithmetic in the finite field: unlike
constructions by Stam [40, 41], Lee and Steinberger [20], and Jetchev et al. [11], our design does
not make use of full field multiplications. The example matrices A given in (13) are designed to
use a minimal amount of non-zero elements. We note that specific choices of A may be more
suited for this construction to be used in an iterated design.

This work provides new insights in double length hashing, but also results in interesting
research questions. Most importantly, is it possible to construct other collision secure F 3 con-
structions (beyond our family of functions F 3

A), that achieve optimal 25n/3 preimage resistance?
An open problem of a more general kind is to design compression functions with better than 2n/2

indifferentiability security.7 We note that the differentiability attacks in Appendices B-D rely on
the fact that these functions make only two primitive calls, which gives the impression at least
three primitive calls are needed for the achievement of such bound.

Also, despite the negative collision resistance result of Proposition 1, the open problems re-
garding F 2 are plentiful, and we name some. Firstly, can Proposition 1 be generalized to cover,
e.g., Jetchev et al.’s construction? Secondly, is it possible to achieve optimal collision security
in the iteration anyhow? Thirdly, can we derive a two-call compression function with the good
“overall” security guarantees? We note that the indifferentiability proofs in this work (Theorems 3
and 4) crucially rely on the presence of a third block cipher call, and the latter question may not
be trivial. Further open research directions include, in line with ideas of [28], the consideration
of F 3 restricted to the xor-only design (where f1, . . . , f4 only xor their parameters).
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A Attack on Recently Proposed Three-Call Compression Function

We consider the compression function F 3
MR : {0, 1}3n → {0, 1}2n, that was recently introduced by

Miyaji and Rashed [30]. It makes three calls to its block cipher E as follows:

F 3
MR(u, v, w) = (y, z), where:

c1 ← E(u,w) ,

k2 ← v ⊕ c1 , c2 ← E(k2, w) ,

k3 ← u⊕ c2 , c3 ← E(k3, w) ,

(y, z)← (u⊕ c2, v ⊕ c1 ⊕ c3) .

The authors claim that a hash function based on F 3
MR achieves optimal 2n collision and 22n

preimage security, contradicting the generalizations of the pigeonhole-birthday attacks as outlined
in (see also Section 2). In fact, we show that improved versions of these generic attacks render
collisions for F 3

MR in about 22n/3 queries and preimages in about 2n queries.

Proposition 4. Let E
$← Bloc(n). Then, one can expect a collision for F 3

MR after 4·22n/3 queries,
and a preimage after 2 · 2n queries.

Proof. We apply the pigeonhole-birthday attacks to F 3
MR. The attack relies on making block cipher

calls that “cover” the evaluation of at least approximately 2n images (for collision resistance) and
22n images (for preimage resistance). The adversary makes 2q queries as follows.

(i) A fixes a w;

(ii) A fixes distinct k(1), . . . , k(q) and queries c(i) ← E(k(i), w);
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(iii) Any choice of 1 ≤ i, j ≤ q uniquely defines a tuple (u, v) such that the first two block cipher
calls of the evaluation F 3

MR(u, v, w) are E(k(i), w) and E(k(j), w). In more detail, these are

u = k(i) , v = k(j) ⊕ c(i) ,

and the key input to the third block cipher will be k(i) ⊕ c(j);
(iv) A identifies a list of q values l(1), . . . , l(q) that maximizes the number of solutions to

∃ i, j, κ ∈ {1, . . . , q} : k(i) ⊕ c(j) = l(κ) ,

and queries c3 ← E(l(κ), w).

The q block cipher evaluations in the last round assure that the adversary learns the evaluation
of at least q · q2/2n = q3/2n compression function calls (by the pigeonhole principle).

One expects a collision within these compression function calls if
(
q3/2n

2

)
≈ 22n, hence for

q = 2 · 22n/3. The total number of queries made by the adversary is 2q = 4 · 22n/3. Similarly, for
preimages, let (y, z) ∈ {0, 1}2n be a range value. The adversary knows a preimage for (y, z) with
certainty if q3/2n ≥ 22n, hence if q ≥ 2n. The total number of queries made by the adversary is
2q = 2 · 2n. ut

Via a meet-in-the-middle approach, the preimage attack on F 3
MR can be used to find a preimage

for Merkle-Damg̊ard based on F 3
MR in about 23n/2 queries. In more detail, let (y, z) ∈ {0, 1}2n be a

given range value, and let (iv1, iv2) ∈ {0, 1}2n be the initial value. Firstly the attacker finds K ≥ 1
free-start preimages for (y, z), which requires K · 2 · 2n queries. Then, starting from (iv1, iv2), A
varies the message block to hit any of the K preimages, which requires 22n/K queries. The total
complexity is 2K2n + 22n/K. Putting K = 2n/2, the total complexity is about 3 · 23n/2.

B Indifferentiability Analysis of Functions in DBL2n

The functions analyzed in this section do not exactly fit the model of Section 2, as the underlying
block ciphers have a 2n-bit key. For k, n ≥ 1, we denote by Bloc(k, n) the set of all block ciphers
with a k-bit key and n-bit message space. Now, the model, as well as the indifferentiability
definition, Definition 3, carries over the natural way. We stress that some of the designs analyzed
in this section are defined to make use of two distinct block ciphers (e.g., one call to a cipher
E1 and one call to E2). However, for all of our results it is not relevant whether the underlying
ciphers are distinct or the same. Therefore, we consider all designs simply to be based on one
single block cipher.

B.1 Indifferentiability Analysis of Stam’s, Tandem-DM, Abreast-DM, Hirose’s,
and Hirose-Class

In this section, we consider Tandem-DM and Abreast-DM [13] (cf. Figure 1), Hirose’s compression
function [8] (cf. Figure 1) and its generalized Hirose-class [7],8 as well as Stam’s supercharged
single call Type-I compression function design [40,41], or more specifically the block cipher based
variant considered in [20]:

Stam(u, v, w) = (y, z), where:

c1 ← E(v‖w, u) ,

y ← c1 + u ,

z ← wy2 + vy + u .

8 Hirose’s function can be seen as a special case of Hirose-class (using that in the attack it is not relevant whether
the underlying block ciphers are distinct or the same), and our attack directly carries over.
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Here, additions and finite field multiplications are done over the field GF (2n). The differentiability
attacks are identical for all designs, and we only consider Tandem-DM (abbreviated to TDM). The
attack is a direct generalization of the fixed-point attack on the Davies-Meyer (DM) compression
function.

We note that Özen and Stam presented a generalized double length design [34], and our attack
on their class (in Appendix B.2) can be seen as a true generalization of the attacks in this section
on Abreast-DM and Hirose’s functions (given that in these attacks it is not relevant whether
the underlying block ciphers are distinct or the same). Nevertheless, these functions are handled
separately for clarity and as an illustration.

Proposition 5. Let E
$← Bloc(2n, n), and let R : {0, 1}3n → {0, 1}2n be a random compression

function. For any simulator S that makes at most qS queries to R, there exists a distinguisher D
that makes 2 queries to its oracles, such that

adviff
TDM,S(D) ≥ 1− qS + 1

2n
.

Proof. Our distinguisher D aims at finding an evaluation of TDM that satisfies:

TDM(u, v, w) = (u, z) , (23)

for some values u, v, w, z. D operates as follows. First, it fixes some values v, w, and queries
u← R−1(v‖w, 0). Next, it queries its left oracle L on input of (u, v, w), and outputs 0 if and only
if the first half of the response equals u (hence if (23) is satisfied). Clearly, in the real world, (23)
holds with certainty, and D succeeds except if S or D obtains a solution to R(u, v, w) = (u, z). As
R is a random function, any query satisfies this equation with probability 1

2n , and R is consulted
at most qS + 1 times. This completes the proof. ut

B.2 Indifferentiability Analysis of Özen-Stam-Class

Özen and Stam [34] analyzed a wide class of double length compression functions, extending the
single-length compression function result of Stam [41].

OS(u, v, w) = (y, z), where:

(k1,m1)← Cpre
1 (u, v, w) ,

c1 ← E(k1,m1) ,

(k2,m2)← Cpre
2 (u, v, w) ,

c2 ← E(k2,m2) ,

(y, z)← Cpost(u, v, w, c1, c2) .

Here, it is required that Cpre
1 and Cpre

2 are bijections, as is Cpost(u, v, w, ·, ·) for fixed (u, v, w). Ad-
ditionally, certain requirements are posed on Caux

1 and Caux
2 (combinations of the three functions),

but these are not relevant for our analysis.

We assume the existence of a bijection M : {0, 1}2n → {0, 1}2n such that the left half of
M ◦Cpost(u, v, w, c1, c2) is independent of c2, and consider the compression function design with
M appended. (Note that this does not affect the security result.) For convenience, we simply
assume the existence of Cpost

1 and Cpost
2 such that

y ← Cpost
1 (u, v, w, c1) ,

z ← Cpost
2 (u, v, w, c1, c2) .
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Proposition 6. Let E
$← Bloc(2n, n), and let R : {0, 1}3n → {0, 1}2n be a random compression

function. For any simulator S that makes at most qS queries to R, there exists a distinguisher D
that makes 2 queries to its oracles, such that

adviff
OS,S(D) ≥ 1− qS + 1

2n
.

Proof. The proof is similar to the one of Proposition 5, and we only highlight the differences. Our
distinguisher D aims at finding an evaluation of OS that satisfies:

OS(u, v, w) = (Cpost
1 (u, v, w, 0), z) , (24)

for some values u, v, w, z. First, the adversary fixes k1, and queries m1 ← R−1(k1, 0). Then, it
computes (u, v, w) ← C−pre

1 (k1,m1). Next, it queries its left oracle L on input of (u, v, w), and
outputs 0 if and only if (24) is satisfied. The remainder of the analysis is the same as in the proof
of Proposition 5. ut

C Indifferentiability Analysis of MDC-2 and MJH

In this section, we consider the MDC-2 and MJH compression functions.9 For MDC-2, we leave
out the swapping at the end as it is of no influence to the indifferentiability proof. The functions
are defined as follows (for MJH, σ is an involution and θ a constant):

MDC-2(u, v, w) = (y, z), where: MJH(u, v, w) = (y, z), where:

c1 ← E(u,w) , c1 ← E(v, u+ w) ,

y ← c1 + w , y ← c1 + u+ w ,

c2 ← E(v, w) , c2 ← E(v, σ(u+ w)) ,

z ← c2 + w . z ← (c2 + σ(u+ w)) · θ + u .

Recall that for our results, it is not relevant whether the underlying ciphers are distinct or the
same.

Proposition 7. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random compression

function. For any simulator S that makes at most qS queries to R, there exists a distinguisher D
that makes 2 queries to its oracles, such that

adviff
MDC-2,S(D) ≥ 1− qS + 1

2n
.

The same result holds for MJH.

Proof. The proof is similar to the one of Proposition 5. Now, our distinguisher aims at finding
an evaluation of MDC-2 that satisfies MDC-2(u, v, w) = (w, z), and the same for MJH. The
remainder of the analysis is almost identical to the proof of Proposition 5, and therefore omitted.

ut

D Indifferentiability Analysis of JOS

In this section, we consider Jetchev et al.’s compression function (called JOS).10 The analysis
is slightly more complicated but in fact not much different. We consider the block cipher based

9 We note that for our analysis it is not relevant whether the underlying ciphers are distinct or the same. Therefore,
we consider the designs to be based on one single block cipher.

10 We note that for our analysis it is not relevant whether the underlying ciphers are distinct or the same. Therefore,
we consider the design to be based on one single block cipher.
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MDC-4(u, v, w) = (y, z), where:

c1 ← E1(u,w) ,

c2 ← E2(v, w) ,

k3 ← cl2‖cr1 + w ,

y ← E2(k3, u) + u ,

k4 ← cl1‖cr2 + w ,

z ← E1(k4, v) + v .

Fig. 20. The MDC-4 compression function. For convenience, the swapping at the end is omitted.

variant with the underlying matrix A as suggested in [33, Section 5.4.2].

JOS(u, v, w) = (y, z), where:

c1 ← E(w, u) ,

c2 ← E(w + uv, v) ,

y ← u+ v + (u+ c1)(v + c2) ,

z ← u+ v + c1 + c2 .

Here, additions and finite field multiplications are done over the field GF (2n).

Proposition 8. Let E
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random compression

function. For any simulator S that makes at most qS queries to R, there exists a distinguisher D
that makes 2 queries to its oracles, such that

adviff
JOS,S(D) ≥ 1− qS + 1

2n
.

Proof. The proof is similar to the one of Proposition 5. Now, our distinguisher aims at finding
an evaluation of JOS(u, v, w) = (y, z) that satisfies y + uz = u2 + u + v. The remainder of the
analysis is almost identical to the proof of Proposition 5, and therefore omitted. ut

E Indifferentiability Analysis of MDC-4

For MDC-4, we leave out the swapping at the end as it is of no influence to the indifferentiability
proof. The function is given in Figure 20. Here, for a bit string x, we write xl and xr to denote
its left and right halves where |xl| = |xr|. MDC-4 achieves a higher level of indifferentiability
security as MDC-2, mainly due to the two sequential rounds. Differentiability is discussed in
Appendix E.1, and indifferentiability in Appendix E.2.

E.1 Differentiability

In Proposition 9 we show that MDC-4 is differentiable from a random oracle in at most about 2n/4

queries. The attack is very similar to the attack of Proposition 3, but is included for convenience.
We briefly note that if E1 = E2, MDC-4 is clearly differentiable in 2 queries, exploiting that
MDC-4(u, u, w) has the same left and right half for any u,w ∈ {0, 1}n.
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Proposition 9. Let E1, E2
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random compression

function. For any simulator S that makes at most qS queries to R, there exists a distinguisher D
that makes 2n/4 + 2 queries to its oracles, such that

adviff
MDC-4,S(D) ≥ 1

2
− 1

2n/4+1
− qS + 1

2n − qS
.

Proof. Our distinguisher D aims at finding two different evaluations of MDC-4 with the same key
inputs to the bottom left block cipher call. In more detail, the distinguisher fixes u and w and
aims at finding two distinct block cipher calls (v, w, c2) and (v′, w, c′2) such that:

cl2 = c′2
l
. (25)

Note that in the real world, for MDC-4, such collisions are expected to be found in about 2n/4

queries to E. If the distinguisher eventually finds a collision as in (25), then the following condition
naturally holds in the real world:

y := MDC-4(u, v, w)l = MDC-4(u, v′, w)l =: y′ . (26)

In the random world, with MDC-4 replaced by R, this equation only holds with small probability.
Note that the simulator never learns the value u, yet, it may simply try to avoid collisions as in
(25). However, in this case, the responses from S are too biased, which allows the distinguisher
to succeed.

Formally, the distinguisher D proceeds as follows.

(i) D makes 2n/4 queries to its right oracle R for different key values and for a fixed message
value w, obtaining 2n/4 distinct tuples (v, w, c2);

(ii) If there is no solution to (25), D returns 1;
(iii) Let (v, w, c2) and (v′, w, c′2) be such that (25) is satisfied;

(iv) Take u
$← {0, 1}n. If (26) holds, D returns 0, and otherwise it returns 1.

Distinguisher D succeeds except in the following two cases: “C1” it is conversing with the real
world and (25) does not have a solution (which means that his guess in step (ii) is wrong), or
“C2” it is conversing with the simulated world and (26) holds (which means that his guess in step
(iv) is wrong). Therefore, adviff

MDC-4,S(D) ≥ 1 − Pr (C1) − Pr (C2). Regarding C1: note that all
queries are made with different key inputs, and E2 is a random cipher. Therefore, all responses
are randomly drawn from a set of size 2n, and a collision (18) occurs with probability at least(

2n/4

2

)
2n/2

2n . Thus,

Pr (C1) ≤ 1−
(

2n/4

2

)
2n/2

2n
=

1

2
+

1

2n/4+1
.

Regarding C2, the proof of Proposition 3 carries over and we find Pr (C2) ≤ qS+1
2n−qS . This completes

the proof. ut

E.2 Indifferentiability

We prove that MDC-4 is indifferentiable from a random function.

Theorem 4. Let E1, E2
$← Bloc(n), and let R : {0, 1}3n → {0, 1}2n be a random function. There

exists a simulator S such that for any distinguisher D that makes at most qL left queries and qR
right queries,

adviff
MDC-4,S(D) ≤ 6(4qL + qR)2

2n/2
,

where S makes qS ≤ qR queries to R.
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The proof of Theorem 4 is similar to the proof of Theorem 3: it differs in various aspects and
therefore deserves a separate proof, but we skip the redundant details. In the remainder of the
section, we first introduce our simulator and accommodate it with an intuition, and next present
the formal proof.

Simulator Intuition

Similar to Section 7.2, the simulator maintains an initially empty lists LE1[k] (corresponding to
E1) and LE2[k] (corresponding to E2) for k ∈ {0, 1}n. Abusing notation, we also write LE =
LE1∪LE2. The simulator is given in Figure 21. It consists of four interfaces: S1/S−1

1 corresponding
to E1/E

−1
1 , and S2/S−1

2 corresponding to E2/E
−1
2 .

Again, apart from the if -clause of lines 02-06, the simulator identically mimics an ideal cipher.
In this particular clause, the simulator checks whether a query (k,m) may appear in an MDC-4
evaluation (see Figure 20) as a bottom query (left or right) for some other pair of queries appearing
in the top. In this case, the simulator should consult R to derive the query response.

Forward Query Sj(k,m) (j ∈ {1, 2})

00 if LE+
j [k](m) 6= ⊥ return c = LE+

j [k](m)

01 c
$← {0, 1}n\LE+

j [k]

02 if ∃ (u,w, c1) ∈ LE1, (v, w, c2) ∈ LE2 : . . .

03 . . . m = u[j = 2] + v[j = 1] and k = clj‖crj̄ + w

04 (y, z)←R(u, v, w)

05 c← m+ (y[j = 2] + z[j = 1])

06 end if

07 return LE+
j [k](m)← c

Inverse Query S−1
j (k, c) (j ∈ {1, 2})

10 if LE−j [k](c) 6= ⊥ return m = LE−j [k](c)

11 m
$← {0, 1}n\LE−j [k]

12 return LE−j [k](c)← m

Fig. 21. The simulator S for E used in the proof of Theorem 4. Here, j̄ ∈ {1, 2} is the complement
of j ∈ {1, 2}. Similar to Figure 18, see footnote 5 regarding the case where there is more than
one solution to the if-clause of line 02–03.

Proof of Theorem 4

We formally prove Theorem 4. The proof is similar to the proof of Theorem 3, with only minor
modifications. Let S be the simulator of Figure 21, and let D be any distinguisher that makes at
most qL left queries and qR right queries. Note that S makes qS ≤ qR queries. By Definition 3,
the goal is to bound:

adviff
MDC-4,S(D) =

∣∣Pr
(
DMDC-4,E = 1

)
−Pr

(
DR,S = 1

)∣∣ . (27)

As in Section 7.2, we first perform a PRP-PRF switch. Ẽ and S̃ are defined similarly as before,
and we obtain for (27):

adviff
MDC-4,S(D) ≤

∣∣∣Pr
(
DMDC-4,Ẽ = 1

)
−Pr

(
DR,S̃ = 1

)∣∣∣+
2(4qL + qR)2

2n
. (28)

It remains to analyze the probability of D to distinguish (MDC-4, Ẽ) (real world) from (R, S̃)
(simulated world). These worlds are described in Figure 22. The notations LE1, LE2 and LR are
defined similarly as before.

Let event cond(LE) be defined as follows:

cond(LE) =

 ∃ j ∈ {l, r}, (k,m, c), (k′,m′, c′) ∈ LE :

(k,m, c) newer than (k′,m′, c′) and

(c+m)j ∈ {kj , k′j , (c′ +m′)j}

 . (29)
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Event cond(LE) is fairly the same as the event for the proof in Section 7.2 (equation (22)).
Therefore, we skip the detailed explanation, and just point out that as long as ¬cond(LE), the
condition in line 42 of Figure 22 is always satisfied by at most one ((u,w, c1), (v, w, c2)). In the
remainder, we prove in Lemma 10 that (MDC-4, Ẽ) and (R, S̃) are perfectly indistinguishable as
long as cond(LE) does not occur in both worlds. Then, in Lemma 11 we prove that cond(LE)

occurs in the real world with probability at most 2(4qL+qR)2

2n/2 and in the simulated world with

probability at most
2q2

R

2n/2 . Together with (28), this completes the proof.

Query MDC-4(u, v, w)

00 c1 ← Ẽ1(u,w)

01 c2 ← Ẽ2(v, w)

02 k3 ← cl2‖cr1 + w

03 y ← Ẽ2(k3, u) + u

04 k4 ← cl1‖cr2 + w

05 z ← Ẽ1(k4, v) + v

06 return (y, z)

Query Ẽj(k,m) (j ∈ {1, 2})

10 if LE+
j [k](m) 6= ⊥ return c = LE+

j [k](m)

11 c
$← {0, 1}n

12 return LE+
j [k](m)← c

Query Ẽ−1
j (k, c) (j ∈ {1, 2})

20 if LE−j [k](c) 6= ⊥ return m = LE−j [k](c)

21 m
$← {0, 1}n

22 return LE−j [k](c)← m

Query R(u, v, w)

30 if LR(u, v, w) 6= ⊥ return (y, z) = LR(u, v, w)

31 (y, z)
$← {0, 1}2n

32 return LR(u, v, w)← (y, z)

Query S̃j(k,m) (j ∈ {1, 2})

40 if LE+
j [k](m) 6= ⊥ return c = LE+

j [k](m)

41 c
$← {0, 1}n

42 if ∃ (u,w, c1) ∈ LE1, (v, w, c2) ∈ LE2 : . . .

43 . . . m = u[j = 2] + v[j = 1] and k = clj‖crj̄ + w

44 (y, z)←R(u, v, w)

45 c← m+ (y[j = 2] + z[j = 1])

46 end if

47 return LE+
j [k](m)← c

Query S̃−1
j (k, c) (j ∈ {1, 2})

50 if LE−j [k](c) 6= ⊥ return m = LE−j [k](c)

51 m
$← {0, 1}n

52 return LE−j [k](c)← m

Fig. 22. The worlds (MDC-4, Ẽ) (left) and (R, S̃) (right).

Lemma 10. As long as ¬cond(LE), (MDC-4, Ẽ) from (R, S̃) are perfectly indistinguishable.

Proof. We consider any query made by the distinguisher, either to the left oracle L (either MDC-4
orR) and the right oracle R/R−1 (either Ẽ/Ẽ−1 or S̃/S̃−1), and show that the query responses are
equally distributed in both worlds (irrespectively of the query history). Without loss of generality,
we consider new queries only: if the distinguisher makes a repetitive query, the answer is known
and identically distributed in both worlds.

L-query (u, v, w). We make the following distinction:

1. LE+
1 [u](w) = ⊥ and/or LE+

2 [v](w) = ⊥. In the real world, this means that the first cipher

call Ẽ1(u,w) or the second call Ẽ2(v, w) is new, and answered with a fresh value. As cond(LE)
does not occur, also the third and fourth call, Ẽ2(k3, u) and Ẽ1(k4, v), are fresh, and both
their responses are drawn from {0, 1}n. Regarding the simulated world, by the condition
“LE+

1 [u](w) = ⊥ or LE+
2 [v](w) = ⊥,” S̃ has never queried R on input of (u, v, w). Indeed, it

had only queried R if the condition of line 42 was satisfied for some existing (u,w, c1) ∈ LE1

and (v, w, c2) ∈ LE2. Thus, also in this world the response is randomly generated from {0, 1}2n;
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2. LE+
1 [u](w) 6= ⊥ and LE+

2 [v](w) 6= ⊥. Note that in the real world, these elements could have
been added to LE via D or via MDC-4. Let c1 = LE+

1 [u](w) and c2 = LE+
2 [v](w), and write

k3 = cl2‖cr1 + w and k4 = cl1‖cr2 + w. We make the following distinction:
• LE+

2 [k3](u) = ⊥ and LE+
1 [k4](v) = ⊥. In the real world, the answers to the queries

Ẽ2(k3, u) and Ẽ1(k4, v) are both fresh and randomly drawn from {0, 1}n. Regarding the
simulated world, by contradiction we prove that R(u, v, w) has never been queried before
by S̃. Indeed, suppose it has been queried before. This necessarily means that there exist
(u,w, c1) ∈ LE1 and (v, w, c2) ∈ LE2 such that clj‖crj̄ +w = k′ and u[j = 2]+v[j = 1] = m′

for some (k′,m′, c′) ∈ LEj . The former implies k′ = k3[j = 2] + k4[j = 1]. This contradicts
the condition that (k3, u) is not in LE2 and (k4, v) not in LE1. Therefore, the query
(u, v, w) to R is new, and the response is randomly drawn from {0, 1}2n;
• LE+

2 [k3](u) 6= ⊥ and/or LE+
1 [k4](v) 6= ⊥. Without loss of generality, assume the former

and write c3 = LE+
2 [k3](u). In the real world, this query could not have been made in an

earlier evaluation of MDC-4 (by virtue of cond(LE)). Therefore, the distinguisher must
have made this query, and particular knows y = c3 + u, which is the left half of the query
response. In the simulated world, a similar story applies: by ¬cond(LE), this query to S̃
must have been made after (u,w, c1) and (v, w, c2), and thus, the response value c3 equals
u + y by line 45, where y equals the left half of R(u, v, w). Thus also in this case, the
distinguisher knows the left half of the query response.
If also LE+

1 [k4](v) 6= ⊥, the same reasoning applies to z, the second half of the query
response. On the other hand, in case LE+

1 [k4](v) = ⊥, the previous bullet carries over to
the z-part.

Rj-query (k,m) (j ∈ {1, 2}). We make the following distinction:

1. ¬ ∃ (u,w, c1) ∈ LE1, (v, w, c2) ∈ LE2 : m = u[j = 2] + v[j = 1] and k = clj‖crj̄ + w. In the

simulated world, the response is randomly drawn from {0, 1}n by construction. Regarding the
real world, first assume (k,m) has never been queried to Ẽj via a query to MDC-4. Then,
the response is clearly fresh and randomly drawn from {0, 1}n. However, it may be the case
that the Ẽj-query could have been triggered by an earlier MDC-4-query. However, by the
condition, it could have impossibly appeared in such evaluation as a bottom left/right query.
It may have appeared as a top left/right query in an MDC-4 evaluation, which means that
(k, v,m) has been queried to MDC-4 for some v (if j = 1) or (u, k,m) for some u (if j = 2).
However, in this setting, the adversary never learnt c, and thus the response to the R-query
appears completely randomly drawn from {0, 1}n;

2. ∃ (u,w, c1) ∈ LE1, (v, w, c2) ∈ LE2 : m = u[j = 2] + v[j = 1] and k = clj‖crj̄ + w. By

¬cond(LE), these values are unique. In the simulated world, the response c is defined as
m+ y (if j = 2) or m+ z (if j = 1), where (y, z) = R(u, v, w). Clearly, if the distinguisher has
queried R(u, v, w) before, it knows the response in advance. Otherwise, it is randomly drawn
from {0, 1}n by construction. Regarding the real world, the same reasoning applies: either
the query is new, or it must have appeared as a bottom query (left if j = 2, right if j = 1)
of an earlier MDC-4 evaluation (by ¬cond(LE)), in which case the distinguisher knows the
response.

R−1
j -query (k, c) (j ∈ {1, 2}). In the simulated world, queries are always answered with a

random answer from {0, 1}n. In the real world, this is also the case, except if a certain query
(k,m) with LE+[k](m) = c has ever been triggered via a call to MDC-4. However, in this case,
the response will still appear completely random to the distinguisher, similar to the first item of
forward queries to Rj . ut

Lemma 11. Pr
(
cond(LE) for (MDC-4, Ẽ)

)
≤ 2(4qL+qR)2

2n/2 and Pr
(
cond(LE) for (R, S̃)

)
≤

2q2
R

2n/2 .
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Proof. The proof is the same as the proof of Lemma 9, with the differences that cond(LEi) gets

satisfied with probability at most 4(i−1)+2

2n/2 and that for the real world (MDC-4, Ẽ) i ranges from
1 to 4qL + qR. ut
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