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Abstract—We consider a generalized construction of stream
ciphers with forward security. The design framework is modular:
it is built from a so-called layer function that updates the key
and (optionally) the nonce and generates a new pseudorandom
output stream. We analyze the generalized construction for four
different instantiations: two possible layer functions that are in
turn instantiated with either a block cipher or a pseudorandom
function. We prove that each of these instantiations gives a
stream cipher that is pseudorandom and forward secure in the
multi-user setting with a very tight bound. A comprehensive
analysis shows that the two block cipher based instantiations
achieve very similar bounds. For the pseudorandom function
based instantiations there is no clear winner: either layer can
be beneficial over the other one, depending on the choice of
parameters. By instantiating the pseudorandom function with a
generic construction such as the sum of permutations, we obtain
a highly efficient and competitive stream cipher based on an n-
bit block cipher that is secure beyond the 2n/2 birthday bound.

Index Terms—stream encryption; key erasure; pseudorandom-
ness; forward security; beyond birthday bound

I. INTRODUCTION

STREAM ciphers use a short secret key to generate a long
pseudorandom string. This string, a “key stream”, can be

used to encrypt data by adding it to the plaintext. A simple
example of a stream cipher is the counter mode (CTR) of
encryption using an n-bit block cipher E:

EK(N) ‖ EK(N + 1) ‖ . . . ,

where K denotes the secret key and N denotes the nonce.
Bellare et al. [1] proved that its key stream is indistinguishable
from random as long as (i) the block cipher cannot be broken
by a computationally bounded adversary, (ii) no two block
cipher calls are made for the same input, and (iii) the total
amount of generated blocks σ satisfies

(
σ
2

)
� 2n.

For some applications, this security guarantee is sufficient.
In other applications, one might want stronger security. One
example property is that of forward security [2]: even if a
secret key is leaked, none of the previous pseudorandom
strings should be endangered. Another property is that of
multi-user security, where an adversary has access to mul-
tiple independent instances simultaneously. Further, if a block
cipher with block size smaller than 128 is used, one would
like to use a mode that is secure beyond the birthday bound,
i.e., secure beyond an attack complexity of 264.

One way to achieve forward security is key erasure, a mech-
anism that consists of interlacing the generation of relatively
short key streams with updates of the key. An example of this
occurs in the stream generation of NIST’s CTR DRBG [3].

Here, one evaluates CTR mode encryption to generate a key
stream of certain length, and then makes sufficient evaluations
of EK for new inputs to derive a new nonce and key.
A comparable technique was employed in Bernstein’s key
erasure random number generator [4], with a main difference
that the nonce does not get updated.

A. Our Contribution

We consider the generalized stream cipher construction G
in Section III. It maintains a state consisting of a key K and a
nonce N , and internally evaluates a layer function to generate
a pseudorandom stream S and to update the internal state. The
construction matches the generalized construction of Bellare
and Yee [2].

We consider two possible layer functions that we deem
most relevant, layer1 of Figure 2a and layer2 of Figure 2b.
Here, we denote by σ ∈ N the number of pseudorandom
blocks generated in one evaluation of the layer function, and
Π is an underlying primitive that is used to instantiate the
layer function. In our work, this primitive is either a block
cipher with key size 2n and block size n, or a pseudorandom
function with key size 2n and block size n. (The choice
for primitives with 2n-bit keys is inspired by our original
applications, see Section I-B. Our results straightforwardly
simplify to constructions from n-bit keyed primitives.)

We next prove tight security of the stream cipher construc-
tion G based on either layer and instantiated with either a block
cipher or a pseudorandom function in Section V. The analyses
are performed in the security formalism of Bellare and Yee [2].
These analyses yield tight bounds with respect to the number
of key stream blocks generated in a layer function (denoted σ),
the number of users, the number of (re-)initializations of the
stream cipher construction, the number of streams generated
per initialization, and the running time of the distinguisher. The
pseudorandom function based constructions achieve beyond
birthday bound security, the block cipher based versions are
birthday bound secure. In this work, a stream cipher is called
beyond birthday bound secure, if the distinguisher’s advantage
to break the construction remains negligible when the total
number of blocks evaluated while interacting with the given
oracle is significantly more than 2n/2.

The proofs are, in fact, performed in a layer-wise adaptive
model, where the adversary does not query the construction on
input of a nonce and a requested number of bits to get a certain
output stream, but instead it has access to the initialization
and next interfaces of G and can query those adaptively. In
addition, along the way, we formalize a lifting lemma, that
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Figure 1: Generalized stream cipher construction G of Section III. Here, Π ∈ Func(3n, n) is a cryptographic primitive, K is
the master key, N is the initial nonce, and S(i) are output streams.

N N + 1 N N + 2 · · · N + σ + 1

ΠK ΠK ΠK · · · ΠK

N ′

K′ S

(a) layer1

N N + 1 N + 2 N + 3 · · · N + σ + 2

ΠK ΠK ΠK ΠK · · · ΠK

N ′

K′ S

(b) layer2

Figure 2: The layer functions layer1 of Algorithm 3 and layer2 of Algorithm 4. Here, Π ∈ Func(3n, n) is a cryptographic
primitive, S is the σn-bit stream for σ ∈ N, and (K ′, N ′) is set as new state.

formalizes security of cascaded usage of a standard model
primitive (Section II-C). This lemma has been implicit in
earlier PRNG security proofs [4]–[6].

Whereas for block ciphers well-analyzed primitives are in
abundance, and most applications use the well-established
AES [7], this is not the case for dedicated pseudorandom
functions [8]. It is therefore more interesting to instantiate the
pseudorandom function based stream ciphers with a modular
pseudorandom function that internally uses a block cipher.
For this, we consider the sum of permutations [9]–[14], or
more detailed the XORPw construction (w ≥ 1) used in
CENC [15]–[17]. In Section VI we consider the instantiation
of G with the pseudorandom function XORPw. The resulting
construction is internally based on a block cipher, and achieves
a much higher level of security than the naive instantiation
using a block cipher.

It turns out that in these standard model analyses, the
differences between G instantiated with layer1 and instan-

tiated with layer2 are rather small. To precisely qualify the
differences between the two layer functions, we next consider
security of the stream cipher construction G in the ideal
model in Section VII, both if based on an ideal cipher and
on a random function. Although this ideal model approach
might be debatable in light of the existence of our standard
model results, ideal model analyses do give more detailed and
more fine-grained bounds on the actual security levels. As
we discuss in detail in Section VII-D1, the derived bounds
for the two instantiations (with layer1 and layer2) with an
ideal cipher E are comparable. This should not come as a
surprise as block collisions dominate the security. For the
instantiations with a random function, more surprising results
turn up: for certain parameter choices, layer1 performs better,
whereas for other parameter choices, layer2 performs better.
We refer to Section VII-D2, and particularly Figure 5, for a
clean visualization of this phenomenon.
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B. Application

The two instantiations of our generalized stream cipher with
a block cipher E generalize existing schemes in the literature:
• G based on layer1 instantiated with a block cipher E.

This stream cipher is a variant of a key erasure random
number generator recently introduced by Bernstein [4],
where Bernstein’s construction takes nonce 0 and can
only be initialized once. More detailed: Bernstein’s con-
struction starts from a 256-bit key K, and uses it to gener-
ate blocks B0 = EK(N), B1 = EK(N+1), . . . , Bσ+1 =
EK(N + σ+ 1) where N = 0n and E is the AES block
cipher. After these block are generated, immediately
overwrite the key K with the first two blocks B0, B1,
and use the other blocks B2, . . . , Bσ+1 as the stream
cipher output. Then start the next query with the new key.
Bernstein already presented an analysis of a slight variant
of his random number generator in [18]. Unfortunately,
[18] only contains a proof sketch. The random number
generator considered in [18] is also slightly different:
the subkeys are generated in the first layer in the form
K1 = EK(0)‖EK(1), K2 = EK(2)‖EK(3), etc. This
conceptually simplifies the reasoning a bit, in that the
lifting result of Section II-C is redundant. However, our
main contribution is a generalized proof of the con-
struction of [4], which is slightly different as the one
of [18]. In the example of Bernstein, σ = 46. In this
case, the computational load of refreshing the key and
nonce is reasonably small compared to the amount of
pseudorandom data that is produced. However, if we
put σ = 1 (like in NIST’s CTR DRBG), the cost of
refreshing the key and nonce becomes relatively high.

• G based on layer2 instantiated with a block cipher E.
If we set σ = 1, this stream cipher corresponds to
the encryption part of NIST’s CTR DRBG [3] that was
already analyzed by Shrimpton and Terashima [5], [19].
Our scheme directly generalizes this result by introducing
an arbitrary σ and by taking multi-user security into
account.

Finally, G based on layer1 instantiated with a pseudorandom
function F is a variant of AES-STREAM suggested and
implemented by Denis [20]. This random number generator
combines above-mentioned Bernstein’s key erasure random
number generator [4] with the FastPRF pseudorandom func-
tion of Mennink and Neves [8]. So far, the mode behind Denis’
AES-STREAM has never been formally analyzed. We are not
aware of any existing encryption mode that corresponds to
layer2 based on a pseudorandom function, but as mentioned
above and discussed in Section VII-D2, it turns out to improve
over layer1 based on a random function for certain parameter
choices.

C. Related Work

Bellare and Yee [2] already considered generic security of
G of Figure 1, for instance instantiated with a pseudorandom
function F . However, our description changes in the way key
and nonce are updated, and in addition, we endeavor tight
bounds that allow us to draw fine-grained conclusions on

the security level of the scheme for a given use case. We
remark that tight security bounds are important: security is
typically dependent on many parameters (such as the number
of evaluations, the amount of generated data per evaluation,
the number of (re-)initializations of the system, etc.), and
all parameters contribute to a security bound. To maintain a
sufficient level of security, the advantage of breaking a scheme
should be � 1. Looser bounds lead to unnecessary usage
restrictions.

Shrimpton and Terashima [5], [19] considered Intel’s hard-
ware RNG in the context of robustness. The encryption part
of that RNG matches our scheme for instantiation layer2

with σ = 1. They particularly prove that CTR DRBG PRNG
is not forward secure, seemingly contradicting our results.
However, the security models of forward security are different.
The main difference is at the implementation level of the
scheme: the model of Shrimpton and Terashima allows to
obtain a pseudorandom stream and subsequently the secret
state used to generate this stream. In our model, the secret
state is always updated directly after a pseudorandom stream
is generated, and it is not possible to obtain the secret state of a
stream that is already generated. Forward security in [5] is also
achievable, as long as one is willing to make some reasonable
assumptions about the adversary’s limitations. Hence, the
practical value of our model is that it shows that if we handle
the secret state well, forward security is easily achievable. In
a recent work, Woodage and Shumow [6] perform a detailed
analysis of the other two PRNGs in NIST’s SP 800-90A [3]:
HMAC DRBG and HASH DRBG (of course omitting the
retracted Dual EC DRBG design).

Bertoni et al. [21] proposed a way to design a PRNG from
a sponge. Gaži and Tessaro [22] expanded their scheme to
a robust PRNG with input, and Hutchington [23] presented
Reverie, an improved and likewise robust version of the
sponge-based PRNG.

Hamann et al. [24] proposed the LIZARD stream cipher,
which defines another closely related line of research about
stream ciphers with provable beyond birthday bound security.
This research focuses more on hardware-based lightweight
ciphers and uses similar information-theoretic methods as the
one used in this work. More analysis of LIZARD was recently
presented by Banik et al. [25] and Hamann and Krause [26].

II. PRELIMINARIES

For n ∈ N, denote by {0, 1}n the set of all bit strings
of length n. For a finite set S, denote by s

$←− S that s gets
sampled uniformly at random from S. For an algorithm D and
an oracle O, denote by O.X the global state variable X across
the oracle O, denote by DO the evaluation of D with oracle
access to O. We denote the advantage of D in distinguishing
two oracles O and P by

∆D (O ; P) =
∣∣Pr
[
DO = 1

]
− Pr

[
DP = 1

]∣∣ . (1)

A. PRP and PRF

For k,m, n ∈ N, denote by Func(m,n) the set of all
functions with domain {0, 1}m and range {0, 1}n, by Perm(n)
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the set of all permutations on {0, 1}n, and by Perm(k, n) the
set of all families of permutations on {0, 1}n indexed by keys
from {0, 1}k.

A block cipher is a function E : {0, 1}k×{0, 1}n → {0, 1}n
such that for fixed key K ∈ {0, 1}k, EK(·) = E(K, ·)
is a permutation on {0, 1}n. Its security is measured by
considering a distinguisher D that is given access to either
EK for secret key K

$←− {0, 1}k, or a random permutation
π

$←− Perm(n), and it is defined as:

Advprp
E (D) = ∆D (EK ; π) . (2)

For q, t ∈ N, we denote

Advprp
E (q, t) = max

D
Advprp

E (D)

as the maximum advantage over any distinguisher that can
make at most q queries and that runs in time at most t.

A pseudorandom function (PRF) is a function F : {0, 1}k×
{0, 1}m → {0, 1}n such that for fixed key K ∈ {0, 1}k,
FK(·) = F (K, ·) is a function that maps {0, 1}m to {0, 1}n.
Its security is measured by considering a distinguisher D that
is given access to either FK for secret key K

$←− {0, 1}k, or
a random function φ $←− Func(m,n), and it is defined as:

Advprf
F (D) = ∆D (FK ; φ) . (3)

For q, t ∈ N, we denote

Advprf
F (q, t) = max

D
Advprf

F (D)

as the maximum advantage over any distinguisher that can
make at most q queries and that runs in time at most t.

Here and throughout, we assume that offline evaluations of
E and F always take 1 unit of time.

B. PRP-PRF Switch

A well-known result states that a PRP behaves like a PRF up
to the birthday bound in the number of construction queries.

Lemma II.1 (PRP-PRF switch [27]). Let E : {0, 1}k ×
{0, 1}n → {0, 1}n be a block cipher. Then,

Advprf
E (q, t) ≤

(
q

2

)
/2n + Advprp

E (q, t) .

C. Lifting Lemma

We pose a useful standard model lifting lemma. The lemma
will be used to replace the standard primitive (in our proofs,
a block cipher or a pseudorandom function) by a random
permutation or function. The lemma follows by a simple
hybrid argument, and it has been observed in several pa-
pers. Notably, the argument is implicit in the PRNG security
proofs of Shrimpton and Terashima [5] and Woodage and
Shumow [6]. Bernstein describes the idea in the context of his
key erasure random number generator [4]. We are not aware
of any published formal argument of this lifting lemma.

Lemma II.2 (lifting lemma). Let f : K→ X, g : K→ Y, and
h : Y → Z be functions. Let RK

$←− K, RX
$←− X, RY

$←− Y,

and RZ
$←− Z. Then, for any distinguisher D running in time

t,

∆D (f(RK), h(g(RK)) ; RX, RZ)

≤ ∆D′ (f(RK), g(RK) ; RX, RY) + ∆D (h(RY) ; RZ) , (4)

where D′ is some distinguisher that runs in time t plus the
time to evaluate h.

Proof. The proof follows by a simple hybrid argument:

∆D (f(RK), h(g(RK)) ; RX, RZ)

≤ ∆D (f(RK), h(g(RK)) ; RX, h(RY))

+ ∆D (RX, h(RY) ; RX, RZ)

≤ ∆D′ (f(RK), g(RK) ; RX, RY) + ∆D (h(RY) ; RZ) ,

where, in order for the reduction to go through, D′ has to
evaluate h in order to simulate the oracle of D.

III. GENERALIZED STREAM CIPHER CONSTRUCTION

Let k, n, σ ∈ N. A layer function takes as input a k-bit key
and an n-bit nonce and returns a new key, new nonce, and
a pseudorandom string of σn-bits. More formally, let layer :
{0, 1}k×{0, 1}n → {0, 1}k×{0, 1}n×{0, 1}σn be a function
such that

(K ′, N ′, S)← layer(K,N) .

We consider a generalized stream cipher G[layer]K that is
a stateful ensemble of algorithms (G.init,G.next) as described
in Algorithms 1 and 2. It is instantiated with layer, keyed with
a master key K ∈ {0, 1}k, and maintains a state (G.K,G.N).
Here, G.K is the current session key which is updated in
every iteration, and G.N is the current session nonce which
may or may not have been updated depending on the used
layer function. A user may call G.init on input of a nonce
to initialize the stream cipher, and per initialization it may
call G.next a restricted number of times to generate σ n-
bit blocks per call. The user cannot evaluate G.next without
having evaluated G.init.

Algorithm 1 G.init
Input: (K,N)
∈ {0, 1}k × {0, 1}n

Output: ∅
1: (G.K,G.N)← (K , N)
2: return

Algorithm 2 G.next
Input: ∅
Output: S ∈ {0, 1}σn

1: (K,N, S)
← layer(G.K,G.N)

2: (G.K,G.N)← (K,N)
3: return S

The stream cipher G simply specifies the two interfaces to
the core function layer. In Sections III-A and III-B, we will
discuss two prominent layer functions that we will consider
in our work.

A. Layer Function 1

Let Π ∈ Func(k + n, n) be a function, with k = 2n,
and consider layer function layer1[Π] of Algorithm 3. The
function is depicted in Figure 2a. Every evaluation generates
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a new key K and a σn-bit stream S. The nonce N remains
unchanged. The resulting scheme generalizes the random
number generator of Bernstein [4], as explained in Section I-B.

Algorithm 3 layer1[Π]

Input: (K,N) ∈ {0, 1}k × {0, 1}n
Output: (K ′, N ′, S) ∈ {0, 1}k × {0, 1}n × {0, 1}σn

1: K ′ ← ΠK(N) ‖ ΠK(N + 1)
2: N ′ ← N
3: S ← ΠK(N + 2) ‖ · · · ‖ ΠK(N + σ + 1)
4: return (K ′, N ′, S)

B. Layer Function 2

Let Π ∈ Func(k + n, n) be a function, with k = 2n,
and consider layer function layer2[Π] of Algorithm 4. The
function is depicted in Figure 2b. Every evaluation generates
a new key K, a nonce N , and a σn-bit stream S. The
resulting scheme generalizes the stream generation of NIST’s
CTR DRBG [3], as explained in Section I-B.

Algorithm 4 layer2[Π]

Input: (K,N) ∈ {0, 1}k × {0, 1}n
Output: (K ′, N ′, S) ∈ {0, 1}k × {0, 1}n × {0, 1}σn

1: K ′ ← ΠK(N) ‖ ΠK(N + 1)
2: N ′ ← ΠK(N + 2)
3: S ← ΠK(N + 3) ‖ · · · ‖ ΠK(N + σ + 2)
4: return (K ′, N ′, S)

IV. SECURITY NOTIONS

The first security property we require of our stream ci-
phers is pseudorandomness, stating that the output streams
are hard to distinguish from random. In addition, as we
particularly consider key erasure, we require forward security.
This property dictates that, once a key of a certain layer leaks,
the security of earlier layers is not affected. We follow the
security formalism of Bellare and Yee [2]. The notions are, by
default, considered in the multi-user security setting, where a
distinguisher has access to µ ∈ N instances. For µ = 1, our
models collapse to single-user security.

A. Streaming Oracle

Ideally, the streams generated by G[layer] are indistin-
guishable from random. This boils down to saying that the
output of G[layer] is indistinguishable from a random bit
string of the same length. This suggests to describe security
as a distinguishing game between the output of G[layer] and
some random bit string. However, in the context of forward
security, the ideal world should still be somehow able to reveal
an internal state that is reminiscent of that of G[layer]. We
resolve this by defining a general oracle Ob that gets as input a
bit b ∈ {0, 1}, and outputs its (pseudo-)random blocks either
as G[layer] (if b = 0) or uniform random (if b = 1). We
denote by ObKi the oracle Ob initialized with a key Ki.

The oracle Ob is formally described in Algorithms 5, 6,
and 7. It is easy to see that Ob fulfills our goals: for b = 0, it

matches G[layer] of Algorithms 1 and 2, whereas for b = 1,
it always outputs random strings. In case of a leak, it gives
the state of G[layer].

Algorithm 5 Ob.init
Input: (K,N)
∈ {0, 1}k × {0, 1}n

Output: ∅
1: (Ob.K,Ob.N)
← (K , N)

2: return

Algorithm 7 Ob.leak
Input: ∅
Output: (K,N)
∈ {0, 1}k × {0, 1}n

1: return (Ob.K,Ob.N)

Algorithm 6 Ob.next
Input: ∅
Output: S ∈ {0, 1}σn

1: (K,N, S0)
←
layer(Ob.K,Ob.N)

2: (Ob.K,Ob.N)
← (K,N)

3: S1
$←− {0, 1}σn

4: return Sb

B. Distinguishing Advantages

Pseudorandomness and forward security are comparable, the
only difference is in the capabilities of the distinguisher. As
a general notion, we define the distinguishing advantage of a
distinguisher.

Definition IV.1 (distinguishing advantage). Let k, n, σ ∈
N and let layer : {0, 1}k × {0, 1}n → {0, 1}k ×
{0, 1}n × {0, 1}σn be a layer function. For µ ∈ N, let
K1,K2, . . . ,Kµ

$←− {0, 1}k. The multi-key advantage of a
distinguisher D in distinguishing G[layer] from random is
defined as:

Adv
dist[µ]
G[layer](D) = ∆D

(
O0K1

, . . . ,O0Kµ ; O1K1
, . . . ,O1Kµ

)
.

(5)

The first call of the distinguisher must be an init call. A leak
call should always follow a next call, and should never be
followed by a next call. The distinguisher may never initialize
any of its oracles with a repeating nonce N (additional
conditions on the nonce may apply).

Note that in above definition, the distinguisher is not al-
lowed to call leak after init: this would result in the silly case
of a master key being leaked. Also, a leak call should either be
the last query, or be followed by an init call: the state should be
re-initialized. The distinguisher has full freedom beyond these
restrictions: it typically records all information it obtains.

Pseudorandomness is defined as follows.

Definition IV.2 (pseudorandomness). For µ, `, q, t ∈ N, we
denote by

Adv
prf[µ]
G[layer](`, q, t) = max

D
Adv

dist[µ]
G[layer](D)

the maximum advantage over any distinguisher that, to each
of its µ oracles, can make at most q init calls, at most ` next
calls per init call, 0 leak calls, and that runs in time at most
t.

Forward security is defined as follows.
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Definition IV.3 (forward security). For µ, `, q, t ∈ N, we
denote by

Adv
fwd[µ]
G[layer](`, q, t) = max

D
Adv

dist[µ]
G[layer](D)

the maximum advantage over any distinguisher that, to each
of its µ oracles, can make at most q init calls, at most ` next
calls per init call, at most 1 leak call (per user), and that runs
in time at most t.

Note that once a leak call is made, the distinguisher knows
the state of the construction. From that moment on, the
construction is not pseudorandom anymore, and one needs to
reinitialize the construction to obtain a new state. However,
due to forward security, the distinguisher cannot learn anything
from the previous states with the leaked state.

To gain understanding in the definitions, we point out that
there is a relation between pseudorandomness and forward
security. The reduction is obvious, noting that a distinguisher
against the forward security may opt not to query leak.

Proposition IV.1. Let k, n, σ ∈ N, and layer : {0, 1}k ×
{0, 1}n → {0, 1}k × {0, 1}n × {0, 1}σn be a layer function.
Let µ, `, q, t ∈ N. Then,

Adv
prf[µ]
G[layer](`, q, t) ≤ Adv

fwd[µ]
G[layer](`, q, t) . (6)

V. SECURITY OF G WITH layer1 OR layer2

We consider the security of our generalized key erasure
stream cipher G of Section III, both with the layer1 function
of Section III-A or the layer2 function of Section III-B,
and both if it is instantiated with a block cipher E :
{0, 1}2n × {0, 1}n → {0, 1}n or a pseudorandom function
F : {0, 1}2n × {0, 1}n → {0, 1}n.

For a = 1, 2, we define

Ga,E := G[layera[E]] , and Ga,F := G[layera[F ]] .

Note that if the state of the stream cipher is (K,N), a next call
in layer1 activates the evaluation of the underlying primitive
on inputs N , N +1, . . . , N +σ+1. Related to this, we define

call1(N) = {N,N + 1, . . . , N + σ + 1} .

Likewise, in layer2, a next call activates one extra call to the
underlying primitive (as opposed to layer1), and we define

call2(N) = {N,N + 1, . . . , N + σ + 2} . (7)

We are now ready to prove security of Ga,F for a = 1, 2.

Theorem V.1 (security of Ga,F (a = 1, 2)). Let n, σ ∈ N and
consider Ga,F for any pseudorandom function F : {0, 1}2n ×
{0, 1}n → {0, 1}n. Let µ, `, q, t ∈ N. Then,

Adv
prf[µ]
Ga,F (`, q, t), Adv

fwd[µ]
Ga,F (`, q, t)

≤ µ ·Advprf
F (σaq, t+ σaµ`q)

+ µ(`− 1)q ·Advprf
F (σa, t+ 2σaµ`q) , (8)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy calla(N) ∩ calla(N ′) = ∅.
Here, σa equals σ + 2 for a = 1 and σ + 3 for a = 2.

The proof is given in Section V-A and strongly relies on
the lifting result of Lemma II.2. In Section V-B, we discuss
the tightness of the bound.

Security of Ga,E for a = 1, 2 follows as a direct conse-
quence of the PRP-PRF switch of Lemma II.1. Tightness is
discussed in Section V-C.

Corollary V.1.1 (security of Ga,E (a = 1, 2)). Let n, σ ∈
N and consider Ga,E for any block cipher E : {0, 1}2n ×
{0, 1}n → {0, 1}n. Let µ, `, q, t ∈ N. Then,

Adv
prf[µ]
Ga,E (`, q, t), Adv

fwd[µ]
Ga,E (`, q, t)

≤ µ ·Advprp
E (σaq, t+ σaµ`q)

+ µ(`− 1)q ·Advprp
E (σa, t+ 2σaµ`q)

+ µ

(
σaq

2

)
/2n + µ(`− 1)q

(
σa
2

)
/2n , (9)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy calla(N) ∩ calla(N ′) = ∅.
Here, σa equals σ + 2 for a = 1 and σ + 3 for a = 2.

A. Proof of Theorem V.1

Let F : {0, 1}2n × {0, 1}n → {0, 1}n, and focus on G1,F

(extension to G2,F is discussed at the end). Consider µ master
keys K1,K2, . . . ,Kµ

$←− {0, 1}2n, and any distinguisher D
that has access to ObK1 , . . . ,ObKµ for b ∈ {0, 1}. It can
initialize each of its µ oracles at most q times, and the layer
function is evaluated at most ` times for each initialization. In
addition, it runs in time at most t (in which time it can make
offline evaluations of F ). As a first hybrid step, we transform
to the single-key setting:

Adv
dist[µ]
G1,F (D) ≤ µ ·Adv

dist[1]
G1,F (D′) , (10)

where D′ operates in time t′ = t+(σ+2)(µ−1)`q as it needs
to simulate D’s oracles. Denote the master key for D′’s game
by K

$←− {0, 1}2n: the distinguisher’s goal is to distinguish
O0K from O1K .

Without loss of generality (as we will maximize over all
possible distinguishers in the end), denote the q nonces for
which D′ queries its oracles by N (1), . . . , N (q), and write

N = (N (1), . . . , N (q)) .

The distance between ObK for b ∈ {0, 1} equals the distance
of the `q σn-bit blocks from uniform random, and we will use
the lifting result of Lemma II.2 to bound this term. For any
N ∈ {0, 1}n, define

fN : {0, 1}2n → {0, 1}σn ,
K 7→ FK(N + 2) ‖ · · · ‖ FK(N + σ + 1) ,

gN : {0, 1}2n → {0, 1}2n ,
K 7→ FK(N) ‖ FK(N + 1) .
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For j ∈ [0, `− 1], write fgjN = fN ◦ gN ◦ · · · ◦ gN . For brevity
of notation, we will define the following extensions of fN and
gN , where K = (K(1), . . . ,K(q)) ∈ ({0, 1}2n)q:

fN (K) =
(
fN(1)(K) . . . fN(q)(K)

)
,

fN (K) =
(
fN(1)(K(1)) . . . fN(q)(K(q))

)
,

gN (K) =
(
gN(1)(K) . . . gN(q)(K)

)
,

gN (K) =
(
gN(1)(K(1)) . . . gN(q)(K(q))

)
.

Write fgjN as before, noting that for j ≥ 1, gjN (K) ∈
({0, 1}2n)q .

Let S(i,j) $←− {0, 1}σn for (i, j) ∈ [1, q]× [1, `], and write

S(j) =
(
S(1,j) . . . S(q,j)

)
.

Then,

Adv
dist[1]
G1,F (D′) = ∆D′




fN (K)
fgN (K)

...
fg`−1

N (K)

 ;


S(1)

S(2)

...
S(`)


 . (11)

1) The First Layer: For G1,F , the first layers are different
from the remaining layers. The reason for this is that all first
layers are generated using one and the same master key K
(all (`− 1)q subsequently layers are supposedly generated for
independent keys). Also for this reason, we have opted for
the compact definitions of fN (K), fN (K), gN (K), gN (K):
they hide a q-column structure within (11) and each of these q
columns are initiated using K $←− {0, 1}2n. The application of
the lifting result of Lemma II.2 to “eliminate” the usage of K
has to be performed on the entire first row of (11). The trick
of the lifting result consists of “replacing” gN (K) by q 2n-bit
random values. This will make all subsequent layers mutually
independent.

Let K(i,2) $←− {0, 1}2n for i ∈ [1, q], and write

K(2) =
(
K(1,2) . . . K(q,2)

)
.

Define

hN : ({0, 1}2n)q → ({0, 1}σn)(`−1)q ,

K 7→

 fN (K)
...

fg`−2
N (K)

 .

By the lifting result of Lemma II.2:

(11) ≤∆D(1)

((
fN (K)
gN (K)

)
;

(
S(1)

K(2)

))

+ ∆D′


 fN (K(2))

...
fg`−2

N (K(2))

 ;

S(2)

...
S(`)


 , (12)

where D(1) runs in time t′ plus the time to simulate h.
Assuming that evaluating F takes one unit of time, evaluating
h takes at most (σ + 2)(`− 1)q evaluations of F . Therefore,

∆D(1)

((
fN (K)
gN (K)

)
;

(
S(1)

K(2)

))
≤ Advprf

F ((σ + 2)q, t′ + (σ + 2)(`− 1)q)

≤ Advprf
F ((σ + 2)q, t+ (σ + 2)µ`q) .

Having eliminated the first layer, the matrices in the second
term of (12) consist of q independent columns. For arbitrary
N , K(2) $←− {0, 1}2n, and S(j) $←− {0, 1}σn for j ∈ [2, `], it
satisfies

∆D′


 fN (K(2))

...
fg`−2

N (K(2))

 ;

S(2)

...
S(`)




≤ q ·∆D′′


 fN (K(2))

...
fg`−2
N (K(2))

 ;

S
(2)

...
S(`)


 ,

where D′′ operates in time t′′ = t′+ (σ+ 2)(`− 1)(q− 1) as
it needs to simulate D′’s oracles. Thus (12) simplifies to

(12) ≤Advprf
F ((σ + 2)q, t+ (σ + 2)µ`q)

+ q ·∆D′′


 fN (K(2))

...
fg`−2
N (K(2))

 ;

S
(2)

...
S(`)


 . (13)

2) The Subsequent Layers: Having resolved the more com-
plicated first layer, the remainder is a piece of cake. A
recursive application of the lifting result of Lemma II.2 yields
for the remaining distance of (13):

∆D′′


 fN (K(2))

...
fg`−2
N (K(2))

 ;

S
(2)

...
S(`)




≤
`−1∑
j=2

∆D(j)

((
fN (K(j))
gN (K(j))

)
;

(
S(j)

K(j+1)

))
+ ∆D(`)

(
fN (K(`)) ; S(`)

)
, (14)

where K(j) $←− {0, 1}2n for j ∈ [3, `]. The time complexities
of D(j) are t′′ plus the time to simulate h at that recursion: at
most (σ + 2)(`− j)q. As before,

∆D(j)

((
fN (K(j))
gN (K(j))

)
;

(
S(j)

K(j+1)

))
≤ Advprf

F (σ + 2, t′′ + (σ + 2)(`− j)q) ,

for j ∈ [2, `− 1], and

∆D(`)

(
fN (K(`)) ; S(`)

)
≤ Advprf

F (σ, t′′) .
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Thus (14) simplifies to

(14) ≤
∑̀
j=2

Advprf
F (σ + 2, t′′ + (σ + 2)(`− j)q)

≤ (`− 1) ·Advprf
F (σ + 2, t′′ + (σ + 2)(`− 2)q)

≤ (`− 1) ·Advprf
F (σ + 2, t+ 2(σ + 2)µ`q) . (15)

3) Conclusion: From Eqns. (10), (11), (12), (13), (14), and
(15), we immediately obtain:

Adv
dist[µ]
G1,F (D) ≤ µ ·Advprf

F ((σ + 2)q, t+ (σ + 2)µ`q)

+ µ(`− 1)q ·Advprf
F (σ + 2, t+ 2(σ + 2)µ`q) .

Maximizing over all D, we obtain that both worlds are
perfectly indistinguishable up to above bound. The bound
applies to both pseudorandomness and forward security.

4) Extension to G2,F : In G2,F , not only the key evolves
over layers, but also the nonce. This, concretely, means that
the functions fN and gN will not be labeled by N anymore.
Instead, they are functions that operate on a state from
{0, 1}2n × {0, 1}n rather than {0, 1}2n, and any layer makes
σ + 3 primitive queries rather than σ + 2. The remaining
analysis is identical, noting that the core of the reduction is
independence of keys across different evaluations of next.

B. Tightness of Theorem V.1

The bound of Theorem V.1 is pretty tight, barring any loss
incurred by the use of the generic lifting result of Lemma II.2.
If F $←− Func(k + n, n), then for q ≥ 1, we have

Advprf
F (q, t) ≈ t/2k ,

assuming that any evaluation of F takes 1 unit of time. In this
case, for G1,F , the bound of (8) simplifies to

2(σ + 2)µ2`2q2

22n
+
µ`qt

22n
.

The first term corresponds to collisions among the subkeys:
all layers are assumed to be evaluated with independent keys,
with the exception of the first layers after the initializations,
which are all evaluated with the same master key. This means
that, among all µ(`− 1)q + µ keys, the scheme exhibits non-
random behavior if there are two colliding keys.

The second term corresponds to the time-memory trade-
off attacks of Biham [28], [29], which demonstrates that if
a distinguisher has access to µ oracles, can make `q calls
per oracle, and can make t offline primitive queries (equating
time with primitive evaluations), it succeeds in recovering a
key with high probability if µ`qt ≈ 22n.

The bound admits a slight loss, most notable due to sim-
plifications in the bounding of the time complexities of the
distinguishers in the reduction. This also results in the fact
that, contrary to intuition, the bound of G2,F is worse than
that of G1,F . In Section VII, we will consider security of the
modes in the ideal primitive model, and derive more accurate
and fine-grained security bounds.

X X + 1 X + 2 X + 3 · · · X + w

EK EK EK EK · · · EK

· · ·

Y

Figure 3: The XORPw[E] construction of (16).

C. Tightness of Corollary V.1.1

The security bound of G1,E differs from that of G1,F in the
addition of

µ

(
(σ + 2)q

2

)
/2n + µ(`− 1)q

(
σ + 2

2

)
/2n ,

due to the PRP-PRF switch. Recall that for q evaluations of
G1,E , all first layers after the initializations are performed for
identical master key, but all subsequent layers are mutually
independent. This means that there are µ keys for which the
underlying block cipher is evaluated (σ+2)q times and µ(`−
1)q keys for which the underlying block cipher is evaluated
σ + 2 times, precisely matching above term.

VI. INSTANTIATING THE PSEUDORANDOM FUNCTION

Iwata [15] introduced the CENC construction, a beyond the
birthday bound encryption scheme based on a block cipher
E : {0, 1}k × {0, 1}n → {0, 1}n. The construction internally
uses a pseudorandom function now known as the XORPw for
w ≥ 1 (see also Figure 3):

XORPw[E](K,X)

= EK(X)⊕ EK(X + 1) ‖ · · · ‖ EK(X)⊕ EK(X + w) .
(16)

For w = 2, it is equal to the sum of permutations [9]–
[14]. For arbitrary w ≥ 2, Iwata [15] proved security up to
22n/3. Iwata et al. [16] proved optimal 2n/w security using
the Mirror Theory [13], [30], [31], and Bhattacharya and
Nandi [17] derived a comparable bound using the Chi Squared
Technique [14].

Lemma VI.1 (Bhattacharya and Nandi [17]). Let n,w ∈ N
and consider XORPw[E] of (16) for any block cipher E :
{0, 1}2n × {0, 1}n → {0, 1}n. Let q, t ∈ N. Then,

Advprf
XORPw[E](q, t)

≤ Advprp
E ((w + 1)q, t′) +

(1 +
√

2)(w + 1)2q

2n
, (17)

with t′ = O(t).
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A. Security of G Instantiated with XORP

The result of Lemma VI.1 shows that for any w ∈ N,
the function XORPw[E] : {0, 1}k × {0, 1}n → {0, 1}wn
is as secure as a parallel evaluation of a random function
F

$←− Func(k + n, n) under w distinct inputs, up to around
2n/w2. It would be tempting to take G of Section III
with layer1[XORPw[E]] or layer2[XORPw[E]], but unfor-
tunately, that hybrid construction does not work nicely: both
would have a key of 2wn bits. Instead, we have to adapt the
formalization of the layers slightly so as to suit instantiation
with the wn-bit XORPw[E]. We will exemplify this for
layer1.

Recall that layer1 calls its underlying primitive on inputs
N, . . . , N +σ+1, and assume w.l.o.g. that σ+2 is a multiple
of w. The adjusted layer′1[Π] for Π ∈ Func(k+n,wn) gets as
input (K,N) and simply makes (σ+2)/w calls to Π on input
(K,N), (K,N+w+1), . . . , (K,N+(σ+2

w −1)w+1). Related
to this, we write G1,XORPw[E] := G[layer′1[XORPw[E]]], and
define

call′1(N) = {N,N + w + 1, . . . , N +

(
σ + 2

w
− 1

)
w + 1} .

We can do the same for layer2, now assuming that σ + 3 is
a multiple of w.

In either case, a simple hybrid argument shows that, for k =
2n, the functions Ga,F and Ga,XORPw[E] are equally secure
up to the bound of Lemma VI.1. Here, we note, however,
that the latter only makes σa/w calls to XORPw[E] and thus
σa(w + 1)/w calls to E.

Corollary VI.1.1 (security of Ga,XORPw[E] (a = 1, 2)). Let
n, σ, w ∈ N and consider Ga,XORPw[E] for any block cipher
E : {0, 1}2n × {0, 1}n → {0, 1}n. Let µ, `, q, t ∈ N. Then,

Adv
prf[µ]
Ga,XORPw [E]

(`, q, t), Adv
fwd[µ]
Ga,XORPw [E]

(`, q, t)

≤ µ ·Advprp
E (σa(w + 1)/wq, t+ σa/wµ`q)

+ µ(`− 1)q ·Advprp
E (σa(w + 1)/w, t+ 2σa/wµ`q)

+ µ · (1 +
√

2)σa(w + 1)2/wq

2n

+ µ(`− 1)q · (1 +
√

2)σa(w + 1)2/w

2n
, (18)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy call′a(N) ∩ call′a(N ′) = ∅.
Here, σa equals σ + 2 for a = 1 and σ + 3 for a = 2.

B. Comparison with Block Cipher Based Schemes

We now have, for both layer1 and layer2, two block
cipher based schemes: Ga,E and Ga,XORPw[E] for a = 1, 2.
The former makes σa block cipher calls per layer, whereas
the latter makes σa(w + 1)/w calls. In addition, the latter
has to maintain n bits of extra state to implement XORPw.
However, the Ga,XORPw[E] does seem to achieve a higher
level of security. In this section, we will make a more detailed
comparison.

We will consider Ga,E and Ga,XORPw[E] for E
$←−

Perm(2n, n). Note that for any such E, we have
Advprp

E (q, t) = t/22n, discarding constants and assuming

that any evaluation of E costs one unit of time. In this case,
the bound of Ga,E of Corollary V.1.1 simplifies to (omitting
constants)

Adv
prf/fwd[µ]
G1,E (`, q, t) ≤ σaµ

2`2q2

22n
+
µ`qt

22n
+
σ2
aµq(`+ q)

2n
.

The bound of Ga,XORPw[E] of Corollary VI.1.1 likewise
simplifies to

Adv
prf/fwd[µ]
G1,XORPw [E]

(`, q, t) ≤ σaµ
2`2q2

22n
+
µ`qt

22n
+
σaµ`q

2n
.

Here, the value w is considered constant.
The security gain of using G1,XORPw[E] over G1,E is

immediate: in the original G1,E , the dominating term is of
the form µq2/2n, i.e., security is only guaranteed up to around
2n/2/µ1/2 queries. In the case of G1,XORPw[E], the dominating
term lasts until around 2n/(µ`) queries.

VII. IDEAL MODEL SECURITY

We study the security of G1,E , G1,F , G2,E , and G2,F in
the ideal model, meaning that the underlying block cipher or
pseudorandom function is assumed to be perfectly random.
This is a stronger security model, yet, it allows to perform
a more fine-grained analysis. In particular, whereas the dif-
ferences between the security bounds between G1,E and G2,E

are negligible in the standard model (the same holds for G1,F

versus G2,F ), in the ideal model the differences are more
accurately derived.

A. Ideal Model Security Notions

For k, n ∈ N, denote by Perm(k, n) the set of all block
ciphers on {0, 1}n keyed with a key from {0, 1}k. Note that
Perm(k, n) ⊆ Func(k + n, n).

The security definitions in the ideal model are very similar
to those of Section IV, the only major difference is that the
primitive Π used in layer is idealized and the distinguisher has
query access to Π. It can make a total amount of r ∈ N queries.
There is no need to limit the time complexity of D anymore;
as of now, it is considered to be information-theoretic, and its
complexity is measured by the amount of queries only.

The formal definitions of ideal model distinguishing advan-
tage (i-dist), pseudorandomness (i-prf), and forward security
(i-fwd) are given below.

Definition VII.1 (ideal model distinguishing advantage). Let
k, n, σ ∈ N, let Π

$←− Prims be a primitive randomly selected
from some finite set of primitives Prims, and layer[Π] :
{0, 1}k × {0, 1}n → {0, 1}k × {0, 1}n × {0, 1}σn be a layer
function based on Π. For µ ∈ N, let K1,K2, . . . ,Kµ

$←−
{0, 1}k. The multi-key advantage of a distinguisher D in
distinguishing G[layer] from random is defined as:

Adv
i-dist[µ]
G[layer[Π]](D) =

∆D
(
O0[Π]K1

, . . . ,O0[Π]Kµ ,Π ; O1[Π]K1
, . . . ,O1[Π]Kµ ,Π

)
.

(19)

The distinguisher has two-sided access to the underlying
primitive Π if Π is a block cipher, and forward access only if Π
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is a pseudorandom function. The first call of the distinguisher
must be an init call. A leak call should always follow a
next call, and should never be followed by a next call. The
distinguisher may never initialize any of its oracles with a
repeating nonce N (additional conditions on the nonce may
apply).

As before, the distinguisher is not allowed to call leak after
init. Ideal model pseudorandomness and forward security are
defined as follows.

Definition VII.2 (ideal model pseudorandomness). For
`, q, r ∈ N, we denote by

Adv
i-prf[µ]
G[layer[Π]](`, q, r) = max

D
Adv

i-dist[µ]
G[layer[Π]](D)

the maximum advantage over any distinguisher that, to each
of its µ oracles, can make at most q init calls, at most ` next
calls per init call, 0 leak calls, and at most r calls to the
underlying primitive.

Definition VII.3 (ideal model forward security). For `, q, r ∈
N, we denote by

Adv
i-fwd[µ]
G[layer[Π]](`, q, r) = max

D
Adv

i-dist[µ]
G[layer[Π]](D)

the maximum advantage over any distinguisher that, to each
of its µ oracles, can make at most q init calls, at most ` next
calls per init call, at most 1 leak call (in total), and at most
r calls to the underlying primitive.

B. Ideal Model Security of G with layer1

We consider security of our generalized key erasure stream
cipher G of Section III with the layer1 function of Sec-
tion III-A, both if it is instantiated with an ideal cipher
E

$←− Perm(2n, n) or a random function F
$←− Func(3n, n).

The proofs are performed in an information-theoretic setting
(i.e., using actual random primitives as components).

Theorem VII.1 (ideal model security of G1,E). Let n, σ ∈ N
and consider G1,E with E

$←− BC(2n, n). Let µ, `, q, r ∈ N.
Then,

Adv
i-prf[µ]
G1,E (`, q, r), Adv

i-fwd[µ]
G1,E (`, q, r)

≤ µ2`2q2

22n
+

µ`qr

22n−1
+

(σ + 2)2µ(`+ q)q

2n+1
, (20)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy call1(N) ∩ call1(N ′) = ∅.

The proof is given in Supplementary Material A. We will
interpret the bound in Section VII-D.

The last term in (20) is the only one with 2n in the
denominator, which makes it the dominating term in The-
orem VII.1. This term is the probability of an n-bit block
collision, and therefore, in the security analysis we have
defined the remaining bad events in a looser and simpler
way. If, instead, G[layer1[F ]] is initiated with a random
function F

$←− Func(3n, n), block collisions are no problem
anymore and it is beneficial to use slightly more involved
bad events. This yields the following theorem, as one can see
from equation (22), this bound is not affected by the block

collision, every term has 22n in the denominator. The proof
of Theorem VII.2 is given in Supplementary Material B. Also
these bounds are interpreted in Section VII-D.

Theorem VII.2 (ideal model security of G1,F ). Let n, σ ∈ N
and consider G1,F with F $←− Func(3n, n). Let µ, `, q, r ∈ N.
Then,

Adv
i-prf[µ]
G1,F (`, q, r) ≤ (2σ + 3)µ2`2q

22n
+
µ`r

22n
, (21)

Adv
i-fwd[µ]
G1,F (`, q, r) ≤ (2σ + 3)µ2`2q

22n
+
µ`r

22n
+
µ(`− 1)q + µ

22n
,

(22)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy call1(N) ∩ call1(N ′) = ∅.

C. Ideal Model Security of G with layer2

Next, we consider G of Section III with the layer2 function
of Section III-B, again both in the case it is instantiated
with an ideal cipher or a random function. We can derive
comparable results for G2,E and G2,F . The proofs are given
in Supplementary Material C and Supplementary Material D,
respectively. The bounds are interpreted in Section VII-D.

Theorem VII.3 (ideal model security of G2,E). Let n, σ ∈ N
and consider G2,E with E

$←− BC(2n, n). Let µ, `, q, r ∈ N.
Then,

Adv
i-prf[µ]
G2,E (`, q, r), Adv

i-fwd[µ]
G2,E (`, q, r) ≤ µ2`2q2

22n

+
µ`qr

22n−1
+

(σ + 3)2µ(`+ q)q

2n+1
+

(2σ + 5)µ2`2q2

23n−1
, (23)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy call2(N) ∩ call2(N ′) = ∅.

Theorem VII.4 (ideal model security of G2,F ). Let n, σ ∈ N
and consider G2,F with F $←− Func(3n, n). Let µ, `, q, r ∈ N.
Then,

Adv
i-prf[µ]
G2,F (`, q, r) ≤ µ2

22n+1
+

(2σ + 5)µ2`2q2

23n

+
µr

22n
+

(σ + 3)µ(`− 1)qr

23n
, (24)

Adv
i-fwd[µ]
G2,F (`, q, r) ≤ µ2

22n+1
+

(2σ + 5)µ2`2q2

23n

+
µr

22n
+

(σ + 3)µ(`− 1)qr

23n

+
µ(`− 1)q + µ

22n
, (25)

provided that for any two distinct initializations of the same
oracle, the nonces N,N ′ satisfy call2(N) ∩ call2(N ′) = ∅.

D. Interpretation

In this section, we interpret the bounds for the block cipher
based schemes and the bounds for the random function based
schemes, both bounds are achieved using the ideal cipher
model.
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Figure 4: The bound of (26) plotted as a function of q, for
n = 128, σ ∈ {20, 21, 22, 24, 28} (right to left), µ = 1, ` = q,
and r = `q.

1) Block Cipher Based Schemes: Discarding the difference
between σ + 2 versus σ + 3, for both pseudorandomness and
forward security the bounds of both G1,E (Theorem VII.1) and
G2,E (Theorem VII.3) are of the form

µ`qr

22n−1
+
σ2µ(`+ q)q

2n
. (26)

This bound is tight, as explained in Section A.
In Figure 4, we plot this bound for n = 128 and various

parameters of σ, µ, `, r. Noting that (26) is linear in µ, we
restrict our focus to µ = 1. Noting that the second term will
dominate, ` will not significantly influence the bound, and we
simply set ` = q. We assume that r = `q. The plots are given
for σ ∈ {20, 21, 22, 24, 28} and are, subsequently, a function
in q.

2) Random Function Based Schemes: The bounds of G1,F

(Theorem VII.2) and G2,F (Theorem VII.4) expose small
differences. Discarding constants and assuming that µ ≤ r,
the bounds are of the following form:

Adv
prf/fwd[µ]
G1,F (`, q, r) .

σµ2`2q

22n
+
µ`r

22n
, (27)

Adv
prf[µ]
G2,F (`, q, r) .

σµ2`2q2

23n
+
µr

22n
+
σµ`qr

23n
, (28)

Adv
fwd[µ]
G2,F (`, q, r) .

σµ2`2q2

23n
+
µr

22n
+
σµ`qr

23n
+
µ`q

22n
.

(29)

In Figure 5, we plot the forward security bounds (27) and (29).
In this case, plotting the probability as function in q is not so
informative. Therefore, we depict the bounds in a different
way. We consider n = 128, σ = 24, µ = 1, and r = `q. We
consider various possibilities of ` and compute q for which
the right hand side of (27) resp. (29) equals 1. For example,
if we consider ` = 220, the dominant term of (27) equals 1
for q = 2212. The plots, as such, consider q as a function of
`, or more formally log2(q) as a function of log2(`).

Unlike for the block cipher based case, the plots of Figure 5
give a more surprising picture: for small values of `, G1,F

performs better and for larger values of `, G2,F performs better.
This is mainly caused by the first term in the bounds, and
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Figure 5: The bounds of (27) and (29), for n = 128, σ = 24,
µ = 1, and r = `q. The two bounds are equated to 1, and
interpreted as log2(q) as function of log2(`).

becomes apparent by comparing the terms for ` constant and
for ` ≈ q. In the former case (` constant) G1,F achieves around
22n/const security and G2,F only 23n/2/constant. In the latter
case (` ≈ q), G1,F achieves 22n/3 security and G2,F reaches
23n/4.

VIII. CONCLUSION

In general, forward security comes at only a marginal
cost over pseudorandomness, the only exception being G2,F .
This is, perhaps, not surprising in light of the definitions
of pseudorandomness and forward security and their relation
given in Proposition IV.1. The observation suggests that the
bound of Proposition IV.1 is reasonably tight.

For the block cipher based stream ciphers, the security
bounds of G1,E and G2,E are comparable: this is because the
dominating term is the one corresponding to block collisions,
and in both schemes the amount of generated blocks is
of the same order. The term disappears when we move to
pseudorandom based instantiations G1,F and G2,F . We have
made use of this in our instantiation of F as XORPw in
Section VI, obtaining a block cipher based scheme akin to
CENC encryption [15] that achieves security well beyond the
birthday bound.

For random function based schemes, generically G2,F per-
forms better than G1,F . Yet, for specific parameters of `, the
situation is reversed. This is because G2,F generates random
nonces every round; these nonces may collide and give the dis-
tinguisher additional power in breaking the pseudorandomness
and forward security.

APPENDIX A
PROOF OF THEOREM VII.1 (G1,E )

Let E
$←− BC(2n, n), and consider µ master keys

K1,K2, . . . ,Kµ
$←− {0, 1}2n. Consider any distinguisher D

that has access to Ob[E]K1 , · · · ,Ob[E]Kµ for b ∈ {0, 1}. It
can initialize each of its µ oracles at most q times, and the layer
function is evaluated at most ` times for each initialization. In
addition, it can make r queries to E (forward or inverse).
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For (h, i, j) ∈ [1, µ] × [1, q] × [1, `], denote by
(K

(i,j)
h , N

(i,j)
h ) the state used in the generation of the j-th

stream in the i-th initialization of the h-th oracle. For any K ∈
{0, 1}k, let σK denote the number of construction-induced
primitive evaluations for key K, where

∑
K∈{0,1}k σK ≤

(σ + 2)µ`q. Denote the input-outputs tuples for a key K by
(X

(m)
K , Y

(m)
K ) for m ∈ [1, σK ], where any order is adopted.

Note that for any K ∈ {0, 1}k,

{X(m)
K | m ∈ [1, σK ]} =

⋃
(h,i,j),K=K

(i,j)
h

call1(N
(i,j)
h ) .

Denote the r primitive queries made by D by (Ll, Xl, Yl) for
l ∈ [1, r].

In the remainder, we treat pseudorandomness and forward
security of (20) separately.

A. Pseudorandomness

For the case of pseudorandomness, the distinguisher D is
not allowed to call Ob.leak. In the real world, security breaks
in case two identical evaluations of E occur (either among
construction queries or between a construction and a primitive
query). This means, for example, that K(i,j)

h = K
(i′,j′)
h′ for

two distinct (h, i, j), (h′, i′, j′). In addition, problems occur
if two distinct evaluations of E give the same n-bit output,
a block collision. The latter term will dominate. It turns out
that a lossier description of the former bad event allows for a
more refined analysis of the second bad event. Formally, we
define a bad event BADi-prf = BADi-prf

cons ∨ BADi-prf
prim ∨ BADi-prf

block
as follows:

BADi-prf
cons : ∃(h, i, j), (h′, i′, j′) ∈ [1, µ]× [1, q]× [1, `] :

(h, i, j) 6= (h′, i′, j′) ∧ ¬(h = h′ ∧ j = j′ = 1)∧

K
(i,j)
h = K

(i′,j′)
h′ ,

BADi-prf
prim : ∃l ∈ [1, r] , (h, i, j) ∈ [1, µ]× [1, q]× [1, `] :

Ll = K
(i,j)
h ,

BADi-prf
block : ∃K ∈ {0, 1}k , m,m′ ∈ [1, σK ] :

m 6= m′ ∧X(m)
K 6= X

(m′)
K ∧ Y (m)

K = Y
(m′)
K .

As long as BADi-prf
prim never happens, primitive queries do

not influence the distribution of the outcomes of the con-
struction oracles. Given that, among the construction queries,
key collisions never occur, block inputs are always distinct
(as call1(N) ∩ call1(N ′) = ∅), and the individual blocks
never collide, the real and ideal oracles behave identically.
Therefore, both oracles are identical until BADi-prf, and by the
fundamental lemma of game playing [27], [32],

Adv
i-dist[µ]
G1,E (D) ≤ Pr

[
BADi-prf

]
. (30)

Clearly,

Pr
[
BADi-prf

]
≤ Pr

[
BADi-prf

cons

]
+ Pr

[
BADi-prf

prim

]
+ Pr

[
BADi-prf

block

∣∣∣ ¬BADi-prf
cons ∧ ¬BAD

i-prf
prim

]
,

(31)

and we want to bound the probability that BADi-prf happens
in the ideal world. For the first probability of (31), noting that
K

(i,1)
h = K

(i′,1)
h = Kh for any h, i, i′, there are a total amount

of µ(`− 1)q + µ keys. Note that the marginal distribution of
the master keys is 1/22n, and the marginal distribution of the
session keys is 1/2n · 1/(2n − 1), since the session keys are
derived as two concatenated calls to an n-bit block cipher. Any
two keys collide with probability at most 2/22n. Summing
over all options, we obtain

Pr
[
BADi-prf

cons

]
≤ 2

(
µ(`− 1)q + µ

2

)
/22n ≤ µ2`2q2

22n
. (32)

For the second probability of (31), consider any possible Ll
(at most r choices), and noting that K(i,1)

h = K
(i′,1)
h = Kh

for any h, i, i′, there are a total amount of at most µ(` −
1)q + µ keys that may set the bad event. Any of the master
keys collides with Ll with probability at most 1/22n, and any
of the session keys collides with Ll with probability at most
2/22n. Since the session keys are derived as two concatenated
calls to an n-bit block cipher, and the marginal distribution
of the session keys are 1/2n · 1/(2n − 1). Summing over all
possible choices of Ll, we obtain

Pr
[
BADi-prf

prim

]
≤ µr

22n
+

2µ(`− 1)qr

22n
≤ µ`qr

22n−1
. (33)

For the third probability of (31), basic probability gives

Pr
[
BADi-prf

block

∣∣∣ ¬BADi-prf
cons ∧ ¬BAD

i-prf
prim

]
≤

∑
K∈{0,1}k

(
σK
2

)
/2n ,

where we will use the negation ¬BADi-prf
cons ∧ ¬BAD

i-prf
prim to

determine the σK’s. By ¬BADi-prf
prim, none of the primitive

queries influences the analysis. By ¬BADi-prf
cons, there are no

“unexpected” collisions among the keys K
(i,j)
h : the only

“expected” collisions are that K(i,1)
h = K

(i′,1)
h = Kh for

any h, i, i′. Therefore, the µ master keys K1, . . . ,Kµ occur
σKh = (σ+2)q times each. Furthermore, any other session key
K

(i,j)
h for (h, i, j) ∈ [1, µ]×[1, q]×[2, `] is used σ

K
(i,j)
h

= σ+2

times. We conclude that

Pr
[
BADi-prf

block

∣∣∣ ¬BADi-prf
cons ∧ ¬BAD

i-prf
prim

]
≤ µ

(
(σ + 2)q

2

)
/2n + µ(`− 1)q

(
σ + 2

2

)
/2n

≤ (σ + 2)2µ(`+ q)q

2n+1
. (34)

From (30), (31), and (32-34), we obtain

Adv
i-dist[µ]
G1,E (D) ≤ µ2`2q2

22n
+

µ`qr

22n−1
+

(σ + 2)2µ(`+ q)q

2n+1
.

Maximizing over all D that, to each of their µ oracles, can
make at most q init calls, at most ` next calls per init call, 0
leak calls, and at most r calls to the underlying block cipher
E. We obtain that both worlds are perfectly indistinguishable
up to above bound.
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B. Forward Security

For the case of forward security, the distinguisher D is
allowed to make at most 1 call to Ob.leak. We would like that
if at some point distinguisher D calls Ob.leak and recovers a
state K̄, all other data still has a certain amount of randomness.
This applies first to the data D has seen so far, as well as
all future data blocks, noting that by Definition VII.3 the
distinguishing game continues once a state is leaked (but D
must re-initialize the state). Denote the index of the leaked
state with overlines: (h̄, ī, j̄), such that K̄ = K

(̄i,j̄)

h̄
. The

restrictions on the distinguisher’s leak query impose that
j̄ > 1 and the distinguisher never queries the stream for index
(h̄, ī, j) with j ≥ j̄.

Informally, we have that any stream learned by D has a
certain amount of randomness if E is never evaluated twice
for the same input (as in the pseudorandomness proof), and
in addition, the leaked key never appears as master or session
key elsewhere. The latter is strictly required to ensure that any
state still maintains some randomness. Formally, we define a
bad event BADi-fwd = BADi-prf ∨ BADi-fwd

hit , with BADi-prf as
above, with the restriction that a primitive query colliding with
a leaked state is invalid, and with BADi-fwd

hit as follows:

BADi-fwd
hit : ∃(h, i, j) ∈ [1, µ]× [1, q]× [1, `] :

(h, i, j) 6= (h̄, ī, j̄) ∧K(i,j)
h = K

(̄i,j̄)

h̄
,

recalling that a leak call should always follow a next call,
hence j̄ > 1.

As explained above, as long as BADi-fwd never happens,
leakage does not help the distinguisher, and we are virtually
back at pseudorandomness. We therefore find, by the funda-
mental lemma of game playing [27], [32],

Adv
i-dist[µ]
G1,E (D) ≤ Pr

[
BADi-fwd

]
≤ Pr

[
BADi-prf

]
+ Pr

[
BADi-fwd

hit

∣∣∣ ¬BADi-prf
]
.

(35)

For the first probability of (35), the bound on (31) with (32-
34) carries over (the limitation that a primitive query colliding
with a leaked state is invalid is irrelevant for the bounding).
The second probability of (35) equals 0 as ¬BADi-prf

cons =⇒
¬BADi-fwd

hit .1

We conclude that

Adv
i-dist[µ]
G1,E (D) ≤ µ2`2q2

22n
+

µ`qr

22n−1
+

(σ + 2)2µ(`+ q)q

2n+1
.

Maximizing over all D that, to each of their µ oracles, can
make at most q init calls, at most ` next calls per init call, 1
leak calls, and at most r calls to the underlying block cipher
E. We obtain that both worlds are perfectly indistinguishable
up to above bound.

1Recall that, as the dominant term in our block cipher based analysis is the
block collision (BADi-prf

block) anyway, the definitions of BADi-prf
cons and BAD

i-prf
prim

were a bit looser to allow for an easier proof. The formalization of BADi-fwd
hit

is strictly seen unnecessary, but included for intuition.

APPENDIX B
PROOF OF THEOREM VII.2 (G1,F )

Let F
$←− Func(3n, n), and consider µ master keys

K1,K2, . . . ,Kµ
$←− {0, 1}2n. Consider any distinguisher D

that has access to Ob[F ]K1
, · · · ,Ob[F ]Kµ for b ∈ {0, 1}. It

can initialize each of its µ oracles at most q times, and the layer
function is evaluated at most ` times for each initialization.
In addition, it can make r queries to F . We use the same
convention for indices as in Section A.

In the remainder, we treat pseudorandomness (21) and
forward security (22) separately.

A. Pseudorandomness

As before, the distinguisher D is not allowed to call
Ob.leak, and security breaks in case two identical evaluations
of F occur. This means, for example, (K

(i,j)
h , N

(i,j)
h ) =

(K
(i′,j′)
h′ , N

(i′,j′)
h′ ) for two distinct (h, i, j), (h′, i′, j′). We can

note, however, that N (i,j)
h = N

(i,1)
h for any (h, i, j). There is

furthermore no need to consider block collisions (as we use F
instead of a block cipher E). Formally, we define a bad event
BADi-prf = BADi-prf

cons ∨ BADi-prf
prim as follows:

BADi-prf
cons : ∃(h, i, j), (h′, i′, j′) ∈ [1, µ]× [1, q]× [1, `] :

(h, i, j) 6= (h′, i′, j′) ∧K(i,j)
h = K

(i′,j′)
h′ ∧

call1(N
(i,1)
h ) ∩ call1(N

(i′,1)
h′ ) 6= ∅ ,

BADi-prf
prim : ∃l ∈ [1, r] , (h, i, j) ∈ [1, µ]× [1, q]× [1, `] :

Ll = K
(i,j)
h ∧Xl ∈ call1(N

(i,1)
h ) .

As long as BADi-prf
prim never happens, primitive queries do not

influence the distribution of the outcomes of the construction
oracles. Given that, among the construction queries, primitive
queries are never evaluated twice under the same input, the real
and ideal oracles behave identically. Therefore, both oracles
are identical until BADi-prf, and by the fundamental lemma of
game playing [27], [32],

Adv
i-dist[µ]
G1,F (D) ≤ Pr

[
BADi-prf

]
. (36)

Clearly,

Pr
[
BADi-prf

]
≤ Pr

[
BADi-prf

cons

]
+ Pr

[
BADi-prf

prim

]
, (37)

and we want to bound the probability that BADi-prf happens
in the ideal world. For the first probability of (37), we make
a distinction depending on the choice of h, h′.
• h = h′. In this case, different initializations of the

oracle are done under difference nonces (such that
call1(N

(i,1)
h ) ∩ call1(N

(i′,1)
h ) = ∅), and hence BADi-prf

cons
happens with probability 0 if i 6= i′. For the case of
i = i′, any two layers have the same nonce, and their
keys collide with probability at most

(
`
2

)
/22n. Summing

over all possible choices of h = h′ and i = i′, BADi-prf
cons

is set with probability at most µ
(
`
2

)
q/22n;

• h 6= h′. Consider any query i ∈ {1, . . . , q}, there
are at most 2σ + 3 possible i′ ∈ {1, . . . , q} such that
call1(N

(i,1)
h ) ∩ call1(N

(i′,1)
h′ ) 6= ∅. For any such choice,
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the keys of two layers collide with probability `2/22n.
Summing over all possible choices of h 6= h′, i, and
i′, BADi-prf

cons is set with probability at most
(
µ
2

)
(2σ +

3)`2q/22n.
Summing over all options, we obtain

Pr
[
BADi-prf

cons

]
≤ µ

(
`

2

)
q

22n
+

(
µ

2

)
(2σ + 3)`2q

22n

≤ (2σ + 3)µ2`2q

22n
. (38)

For the second probability of (37), consider any possible
(Ll, Xl) (r choices). We have at most µ possible choices h, as
the distinguisher must choose its nonces so that call1(N

(i,1)
h )∩

call1(N
(i′,1)
h ) = ∅ there is at most 1 possible i such that

Xl ∈ call1(N
(i,1)
h ), and there are ` possible choices of j.

For any selection of parameters, we have Ll = K
(i,j)
h with

probability 1/22n. Hence,

Pr
[
BADi-prf

prim

]
≤ µ`r

22n
. (39)

From (36), (37), and (38-39), we obtain

Adv
i-dist[µ]
G1,F (D) ≤ (2σ + 3)µ2`2q

22n
+
µ`r

22n
.

Maximizing over all D that, to each of their µ oracles, can
make at most q init calls, at most ` next calls per init call, 0
leak calls, and at most r calls to the underlying block cipher
F . We obtain that both worlds are perfectly indistinguishable
up to above bound.

B. Forward Security

The additional bad event needed to guarantee indistinguisha-
bility for any distinguisher D that is allowed to make at
most 1 call to Ob.leak remains the same as the case of
block cipher based schemes. Formally, we define a bad event
BADi-fwd = BADi-prf ∨BADi-fwd

hit , with BADi-prf as above, with
the restriction that a primitive query colliding with a leaked
state is invalid, and with BADi-fwd

hit exactly as before:

BADi-fwd
hit : ∃(h, i, j) ∈ [1, µ]× [1, q]× [1, `] :

(h, i, j) 6= (h̄, ī, j̄) ∧K(i,j)
h = K

(̄i,j̄)

h̄
,

recalling that a leak call should always follow a next call,
hence j̄ > 1.

As before, as long as BADi-fwd never happens, leakage
does not help the distinguisher, and we are virtually back
at pseudorandomness. We therefore find, by the fundamental
lemma of game playing [27], [32],

Adv
i-dist[µ]
G1,F (D) ≤ Pr

[
BADi-fwd

]
≤ Pr

[
BADi-prf

]
+ Pr

[
BADi-fwd

hit

∣∣∣ ¬BADi-prf
]
.

(40)

For the first probability of (40), the bound on (37) with (38-39)
carries over (the limitation that a primitive query colliding with
a leaked state is invalid is irrelevant for the bounding). For the
second probability of (40), noting that K(i,1)

h = K
(i′,1)
h = Kh

for any h, i, i′, there are a total amount of at most µ(`−1)q+µ

keys that may set the bad event. Any of the keys collides
with K (̄i,j̄)

h̄
with probability at most 1/22n. Summing over all

options, we obtain

Pr
[
BADi-fwd

hit

∣∣∣ ¬BADi-prf
]
≤ µ(`− 1)q + µ

22n
. (41)

From (40), (37), and (41), we obtain

Adv
i-dist[µ]
G1,F (D) ≤ (2σ + 3)µ2`2q

22n
+
µ`r

22n
+
µ(`− 1)q + µ

22n
.

Maximizing over all D that, to each of their µ oracles, can
make at most q init calls, at most ` next calls per init call, 1
leak calls, and at most r calls to the underlying block cipher
F . We obtain that both worlds are perfectly indistinguishable
up to above bound.

APPENDIX C
PROOF OF THEOREM VII.3 (G2,E )

The proof is very similar to that in Section A, most
importantly due to the relaxed description of BADi-prf

cons and
BADi-prf

prim. There are only two differences.
The first difference is that call1() is replaced with call2(),

a change dealt with by replacing σ + 2 by σ + 3.
The second difference is that, among different layers, N (i,j)

h

changes. This means that the condition “block inputs are
always distinct (as call2(N)∩call2(N ′) = ∅)” does not apply
anymore, and we will have to include an additional block
collision event that captures input collisions. Formally, we
define a bad event BADi-prf = BADi-prf

cons∨BAD
i-prf
prim∨BAD

i-prf
block∨

BADi-prf
nonce, where the first three bad events are as in Section A,

and the fourth is as follows:

BADi-prf
nonce : ∃(h, i, j), (h′, i′, j′) ∈ [1, µ]× [1, q]× [1, `] :

(h, i, j) 6= (h′, i′, j′) ∧K(i,j)
h = K

(i′,j′)
h′ ∧

call2(N
(i,j)
h ) ∩ call2(N

(i′,j′)
h′ ) 6= ∅ .

The same reasoning as before applies, yielding

Adv
i-dist[µ]
G2,E (D) ≤ Pr

[
BADi-prf

]
≤ Pr

[
BADi-prf

cons

]
+ Pr

[
BADi-prf

prim

]
+ Pr

[
BADi-prf

block

∣∣∣ ¬BADi-prf
cons ∧ ¬BAD

i-prf
prim

]
+ Pr

[
BADi-prf

nonce

∣∣∣ ¬BADi-prf
cons ∧ ¬BAD

i-prf
prim

]
,

(42)

and we want to bound the probability that BADi-prf happens
in the ideal world. For the first three probabilities of (42), the
bounds of (32-34) in Section A carries over, with σ+2 replaced
by σ + 3. Recall that the marginal distribution of the master
keys is 1/22n, of the session keys is 1/2n ·1/(2n−1), and of
the session nonces is 1/(2n−2). For the fourth probability of
(42), we make a distinction depending on the choice of j, j′.
• j = 1, j′ = 1. If h = h′, the event is set with probability

0 as the distinguisher must choose its nonces so that
call2(N

(i,1)
h ) ∩ call2(N

(i′,1)
h ) = ∅. On the other hand,

if h 6= h′, we have K(i,1)
h = Kh and K(i′,1)

h′ = Kh′ and
the event is set with probability 1/22n. However, we do
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not need to include this event as it does not happen by
virtue of ¬BADi-prf

cons.
• j = 1, j′ > 1. Note that K(i,1)

h = Kh denotes the h-th
master key. The states are always randomly generated and
for every possible (h′, i′, j′) the conditions are set with
probability 4(2σ + 5)/23n. We have µ possible master
keys, and µ(` − 1)q choices (h′, i′, j′) such that j′ ∈
[2, `]. Hence, BADi-prf

nonce is set with probability at most
4(2σ + 5)µ2(`− 1)q/23n.

• j > 1, j′ > 1. The states are always randomly generated
and for every possible (h, i, j), (h′, i′, j′) the conditions
are set with probability 4(2σ+5)/23n. There are at most(
µ(`−1)q

2

)
possible choices for (h, i, j), (h′, i′, j′) such

that j, j′ ∈ [2, `]. Hence BADi-prf
nonce is set with probability

at most 4
(
µ(`−1)q

2

)
(2σ + 5)/23n.

Summing over all options, we obtain

Pr
[
BADi-prf

nonce

]
≤ 4(2σ + 5)µ2(`− 1)q

23n
+ 4

(
µ(`− 1)q

2

)
2σ + 5

23n

≤ (2σ + 5)µ2`2q2

23n−1
. (43)

From (42), (32-34), and (43), we obtain

Adv
i-dist[µ]
G2,E (D) ≤ µ2`2q2

22n
+

µ`qr

22n−1
+

(σ + 3)2µ(`+ q)q

2n+1

+
(2σ + 5)µ2`2q2

23n−1
.

Maximizing over all D, we obtain that both worlds are
perfectly indistinguishable up to above bound. The bound
applies to both pseudorandomness and forward security.

APPENDIX D
PROOF OF THEOREM VII.4 (G2,F )

Let F
$←− Func(3n, n), and consider µ master keys

K1,K2, . . . ,Kµ
$←− {0, 1}2n. Consider any distinguisher D

that has access to Ob[F ]K1 , · · · ,Ob[F ]Kµ for b ∈ {0, 1}. It
can initialize each of its µ oracles at most q times, and the layer
function is evaluated at most ` times for each initialization.
In addition, it can make r queries to F . We use the same
convention for indices as in Section A.

In the remainder, we treat pseudorandomness (24) and
forward security (25) separately.

A. Pseudorandomness

As in the analysis of layer1[F ] in Section B, security breaks
in case two identical evaluations of F occur. This means,
for example, (K

(i,j)
h , N

(i,j)
h ) = (K

(i′,j′)
h′ , N

(i′,j′)
h′ ) for two

distinct (h, i, j), (h′, i′, j′). The current scheme, however, uses
layer2, which changes its nonce every layer. This results in a
slightly different bad event that captures construction queries.

Formally, we define a bad event BADi-prf = BADi-prf
cons∨BAD

i-prf
prim

as follows:

BADi-prf
cons : ∃(h, i, j), (h′, i′, j′) ∈ [1, µ]× [1, q]× [1, `] :

(h, i, j) 6= (h′, i′, j′) ∧K(i,j)
h = K

(i′,j′)
h′ ∧

call2(N
(i,j)
h ) ∩ call2(N

(i′,j′)
h′ ) 6= ∅ ,

BADi-prf
prim : ∃l ∈ [1, r] , (h, i, j) ∈ [1, µ]× [1, q]× [1, `] :

Ll = K
(i,j)
h ∧Xl ∈ call2(N

(i,j)
h ) .

In line with the reasoning of Section B,

Adv
i-dist[µ]
G2,F (D) ≤ Pr

[
BADi-prf

]
≤ Pr

[
BADi-prf

cons

]
+ Pr

[
BADi-prf

prim

]
, (44)

and we want to bound the probability that BADi-prf happens in
the ideal world. For the first probability of (44), we can almost
inherit the computation on BADi-prf

nonce of (43): the definitions of
bad events is identical, but in (43) we assumed ¬BADi-prf

cons as
assumption. We make a distinction depending on the choice
of j, j′.
• j = 1, j′ = 1. If h = h′, the event is set with probability

0 as the distinguisher must choose its nonces so that
call2(N

(i,1)
h ) ∩ call2(N

(i′,1)
h ) = ∅. On the other hand,

if h 6= h′, we have K(i,1)
h = Kh and K(i′,1)

h′ = Kh′ and
the event is set with probability 1/22n. Hence, BADi-prf

nonce
is set with probability at most

(
µ
2

)
/22n ≤ µ2/22n+1.

• j = 1, j′ > 1. Note that K(i,1)
h = Kh denotes the h-

th master key. The states are always randomly generated
and for every possible (h′, i′, j′) the conditions are set
with probability (2σ+5)/23n. We have µ possible master
keys, and µ(` − 1)q choices (h′, i′, j′) such that j′ ∈
[2, `]. Hence, BADi-prf

nonce is set with probability at most
(2σ + 5)µ2(`− 1)q/23n.

• j > 1, j′ > 1. The states are always randomly generated
and for every possible (h, i, j), (h′, i′, j′) the conditions
are set with probability (2σ + 5)/23n. There are at most(
µ(`−1)q

2

)
possible choices for (h, i, j), (h′, i′, j′) such

that j, j′ ∈ [2, `]. Hence BADi-prf
nonce is set with probability

at most
(
µ(`−1)q

2

)
(2σ + 5)/23n.

Summing over all options, we obtain

Pr
[
BADi-prf

cons

]
≤ µ2

22n+1
+

(2σ + 5)µ2(`− 1)q

23n
+

(
µ(`− 1)q

2

)
2σ + 5

23n

≤ µ2

22n+1
+

(2σ + 5)µ2`2q2

23n
. (45)

For the second probability of (44), consider any possible
(Ll, Xl) (r choices). We likewise make a distinction depending
on the choice of j.

• j = 1. Note that K(i,1)
h = Kh denotes the h-th master

key. The bad event is set if Ll = Kh, which happens with
probability 1/22n. Summing over all possible choices,
BADi-prf

prim is set (for this primitive query) with probability
at most µ/22n.
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• j > 1. The states are always randomly generated and
for every possible (h, i, j) the conditions are set with
probability (σ + 3)/23n. There are at most µ(` − 1)q
possible choices for (h, i, j) such that j ∈ [2, `], and
hence BADi-prf

prim is set (for this primitive query) with
probability at most (σ + 3)µ(`− 1)q/23n.

Summing over all possible choices of (Ll, Xl), we obtain

Pr
[
BADi-prf

prim

]
≤ µr

22n
+

(σ + 3)µ(`− 1)qr

23n
. (46)

From (44) and (45-46), we obtain

Adv
dist[µ]
G2,F (D) ≤ µ2

22n+1
+

(2σ + 5)µ2`2q2

23n
+
µr

22n

+
(σ + 3)µ(`− 1)qr

23n
.

Maximizing over all D that, to each of their µ oracles, can
make at most q init calls, at most ` next calls per init call, 0
leak calls, and at most r calls to the underlying block cipher
F . We obtain that both worlds are perfectly indistinguishable
up to above bound.

B. Forward Security

The analysis is identical to the analysis of forward security
of G1,F , noting that the bad event introduced there is indepen-
dent of the nonce anyway. We obtain

Adv
i-dist[µ]
G2,F (D) ≤ µ2

22n+1
+

(2σ + 5)µ2`2q2

23n
+
µr

22n

+
(σ + 3)µ(`− 1)qr

23n
+
µ(`− 1)q + µ

22n
.

Maximizing over all D that, to each of their µ oracles, can
make at most q init calls, at most ` next calls per init call, 1
leak calls, and at most r calls to the underlying block cipher
F . We obtain that both worlds are perfectly indistinguishable
up to above bound.
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