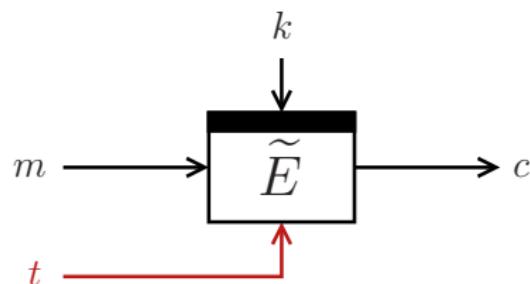
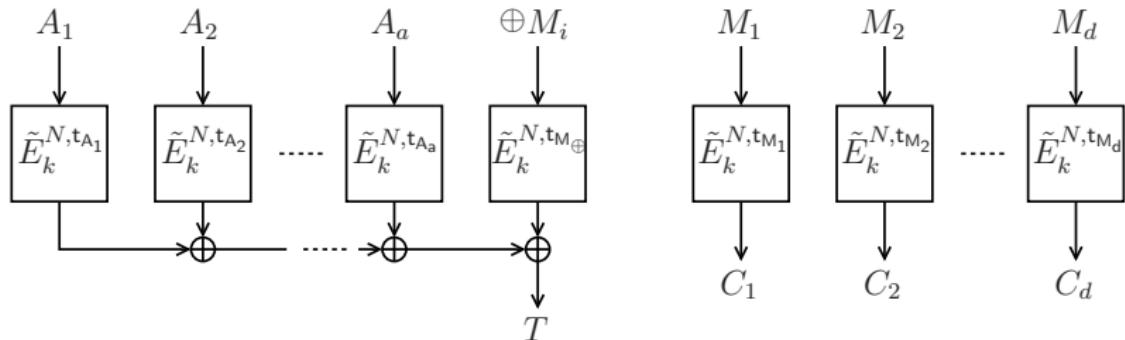


Insuperability of the Standard Versus Ideal Model Gap for Tweakable Blockcipher Security

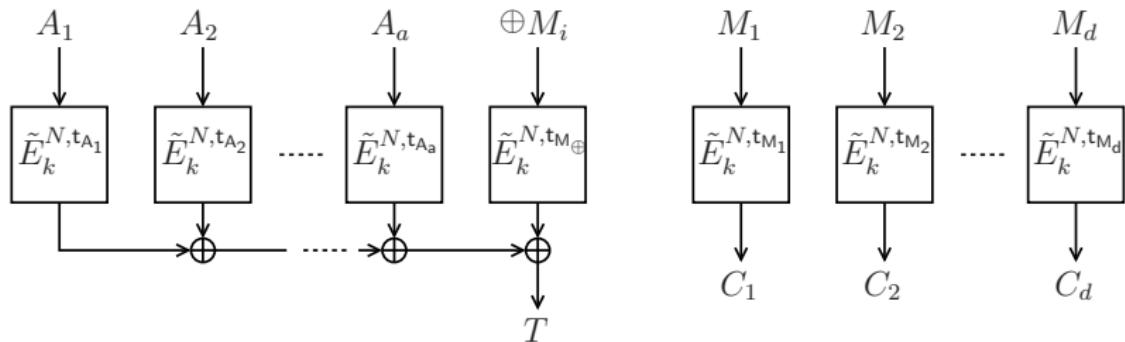

Bart Mennink
Radboud University (The Netherlands)

CRYPTO 2017
August 21, 2017

Tweakable Blockciphers



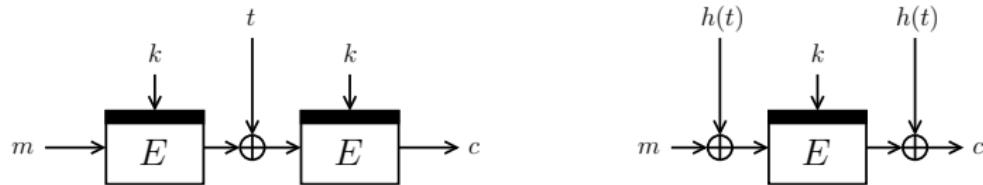
Tweakable Blockciphers


- Tweak: flexibility to the cipher
- Each tweak gives different permutation

Tweakable Blockciphers in OCBx

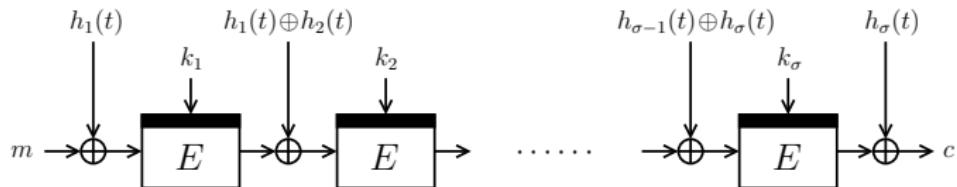
- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]

Tweakable Blockciphers in OCBx

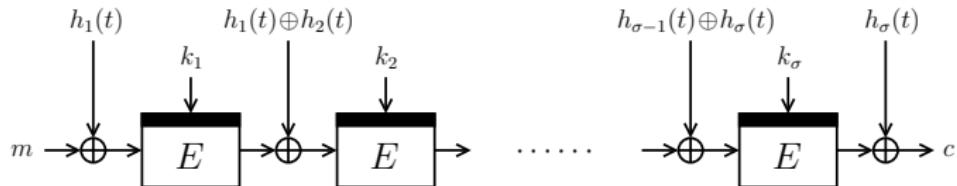

- Generalized OCB by Rogaway et al. [RBBK01, Rog04, KR11]
- Internally based on tweakable blockcipher \tilde{E}
 - Tweak (N, tweak) is unique for **every** evaluation
 - Different blocks always transformed under different tweak

Dedicated Tweakable Blockciphers

- Hasty Pudding Cipher [Sch98]
 - AES submission, “first tweakable cipher”
- Mercy [Cro01]
 - Disk encryption
- Threefish [FLS+07]
 - SHA-3 submission Skein
- TWEAKEY framework [JNP14]
 - Four CAESAR submissions
 - SKINNY & MANTIS


Modular Designs

- LRW1 and LRW2 by Liskov et al. [LRW02]:


- h is XOR-universal hash
- Related: XEX
- Secure up to $2^{n/2}$ queries

Modular Designs

- LRW2 $[\sigma]$: concatenation of σ LRW2's
- k_1, \dots, k_σ and h_1, \dots, h_σ independent

Modular Designs

- LRW2 $[\sigma]$: concatenation of σ LRW2's
- k_1, \dots, k_σ and h_1, \dots, h_σ independent
- $\sigma = 2$: secure up to $2^{2n/3}$ queries [LST12, Pro14]
- $\sigma \geq 2$ even: secure up to $2^{\sigma n / (\sigma + 2)}$ queries [LS13]
- Conjecture: optimal $2^{\sigma n / (\sigma + 1)}$ security

State of the Art

scheme	security (\log_2)	key length	cost	
			E	\otimes/h
LRW1	$n/2$	n	2	0
LRW2	$n/2$	$2n$	1	1
XEX	$n/2$	n	2	0
LRW2[2]	$2n/3$	$4n$	2	2
LRW2[σ]	$\sigma n/(\sigma+2)$	$2\sigma n$	σ	σ

Optimal 2^n security only if **key length and cost $\rightarrow \infty$** ?

Tweak-Dependent Keys

Efficiency

tweak schedule **lighter**
than key schedule

Tweak-Dependent Keys

Efficiency

tweak schedule **lighter**
than key schedule

Security

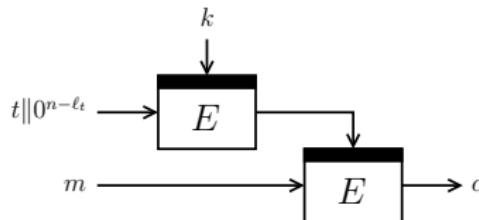
tweak schedule **stronger**
than key schedule

Tweak-Dependent Keys

Efficiency

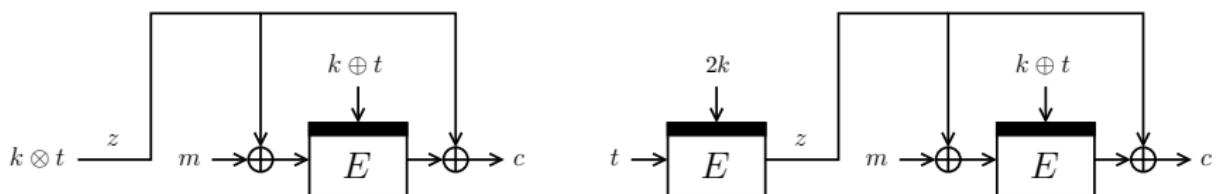
tweak schedule **lighter**
than key schedule

Security


tweak schedule **stronger**
than key schedule

Tweak and key change approximately **equally expensive**
(as is e.g. done in TWEAKEY [JNP14])

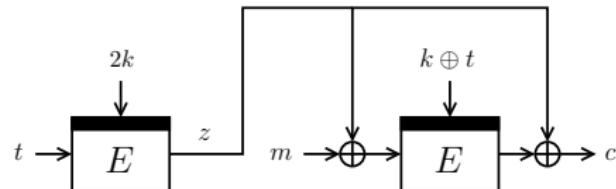
Tweak-Dependent Keys: Modular Designs


- Minematsu [Min09]:

- Secure up to $\max\{2^{n/2}, 2^{n-\ell_t}\}$ queries
- Beyond birthday bound for $\ell_t < n/2$
- Security gain using XTX [MI15]

Tweak-Dependent Keys: Modular Designs

- Mennink [Men15]:

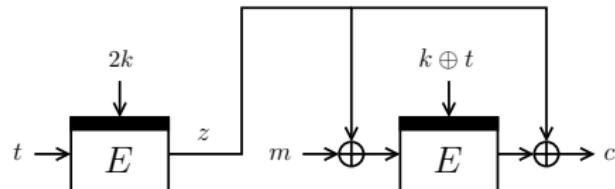

- Secure up to $2^{2n/3}$ and 2^n queries
- Generalized by Wang et al. [WGZ+16]
- Proof in ideal cipher model

Tweak-Dependent Keys: State of the Art

scheme	security (\log_2)	key length	cost		
			E	\otimes/h	tdk
LRW1	$n/2$	n	2	0	0
LRW2	$n/2$	$2n$	1	1	0
XEX	$n/2$	n	2	0	0
LRW2[2]	$2n/3$	$4n$	2	2	0
LRW2[σ]	$\sigma n/(\sigma+2)$	$2\sigma n$	σ	σ	0
Min	$\max\{n/2, n- t \}$	n	2	0	1
Men1	$2n/3$ *	n	1	1	1
Men2, WGZ+	n *	n	2	0	1

* ideal cipher model

Why the Ideal Cipher Model?

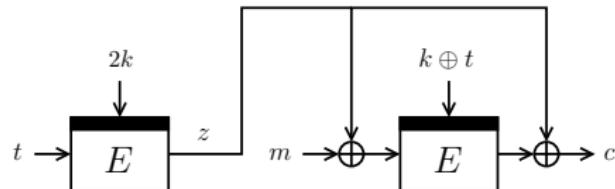


Men2 with
ideal cipher E

ideal tweakable
cipher $\tilde{\pi}$

$\frac{q}{2^n}$ in ideal model [Men15]

Why the Ideal Cipher Model?

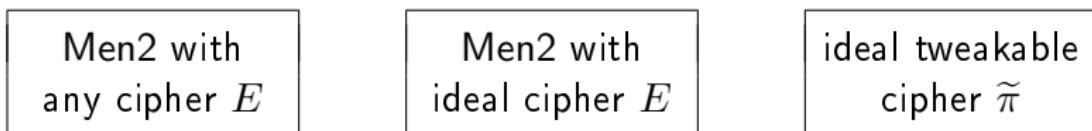
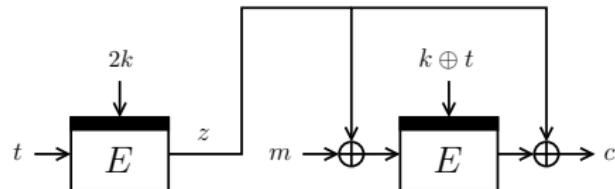

Men2 with
any cipher E

Men2 with
ideal cipher E

ideal tweakable
cipher $\tilde{\pi}$

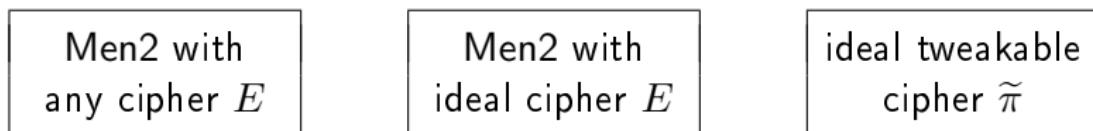
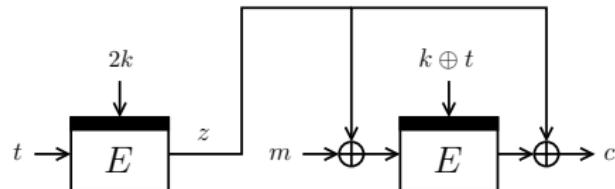
$\frac{q}{2^n}$ in ideal model [Men15]

Why the Ideal Cipher Model?



Men2 with
any cipher E

Men2 with
ideal cipher E

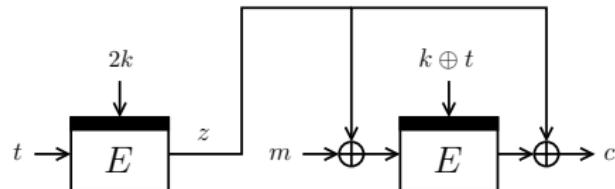
ideal tweakable
cipher $\tilde{\pi}$



generic: security of E $\frac{q}{2^n}$ in ideal model [Men15]

Why the Ideal Cipher Model?

generic: security of E $\approx \frac{q}{2^n}$ in ideal model [Men15]
 \oplus -rk security of E

Why the Ideal Cipher Model?


generic: security of E $\approx \frac{q}{2^n}$ in ideal model [Men15]

\oplus -rk security of E

$=$

$\frac{q^2}{2^n}$ only

Why the Ideal Cipher Model?

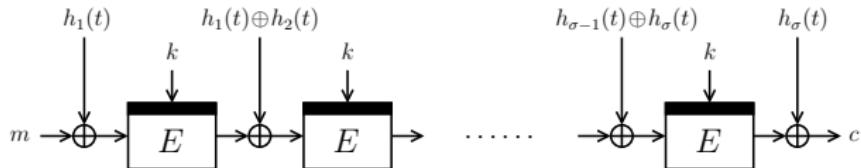
Men2 with
any cipher E

Men2 with
ideal cipher E

ideal tweakable
cipher $\tilde{\pi}$

generic: security of $E \quad \frac{q}{2^n}$ in ideal model [Men15]

2


\oplus -rk security of E

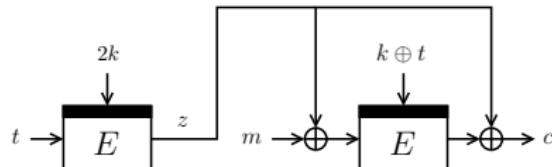
$$= \frac{q^2}{2^n} \text{ only}$$

- Cannot be used to break Men2
- Generic step is unnecessarily loose

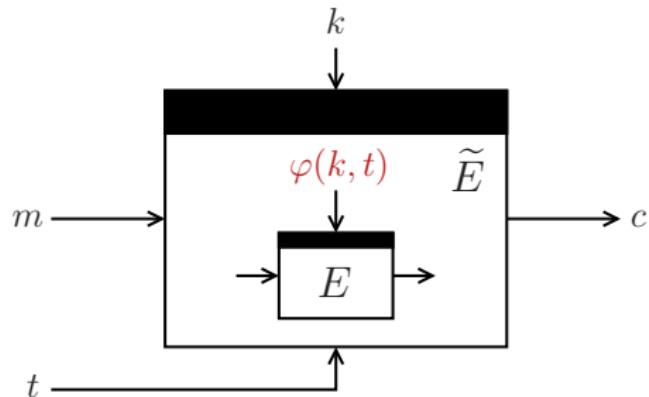
Two Extremes

LRW2[σ] (conjectured):

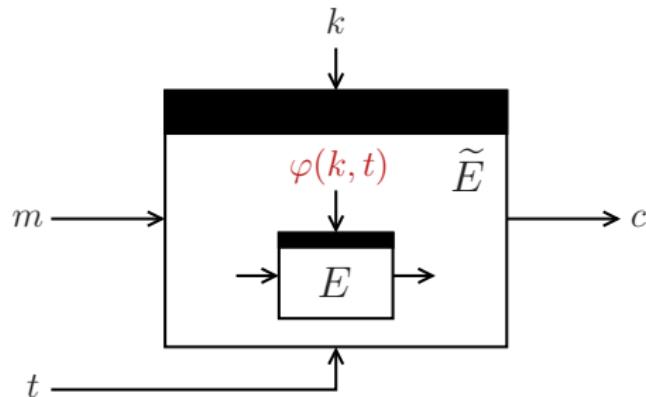
$$\mathbf{Adv}_{\text{LRW2}[\sigma]}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{sprp}}(\sigma q, t)}_{\approx t/2^n \text{ (optimal)}} + \underbrace{O(q^{\sigma+1}/2^{\sigma n})}_{\text{non-optimal}}$$


Two Extremes

LRW2[σ] (conjectured):

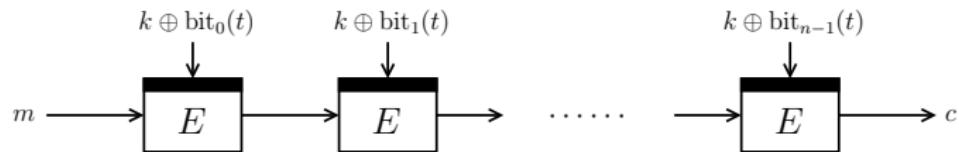

$$\mathbf{Adv}_{\text{LRW2}[\sigma]}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{sprp}}(\sigma q, t)}_{\approx t/2^n \text{ (optimal)}} + \underbrace{O(q^{\sigma+1}/2^{\sigma n})}_{\text{non-optimal}}$$

Men2:

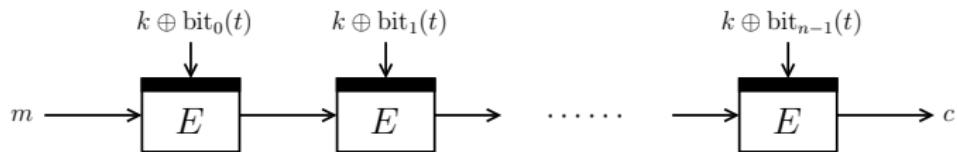

$$\mathbf{Adv}_{\text{Men2}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\oplus\text{-rk}}(2q, t)}_{\approx 2qt/2^n \text{ (non-optimal)}} + \underbrace{O(q/2^n)}_{\text{optimal}}$$

Somewhat Tweak-Rekeyability

- Tweak influence to key **present but limited**

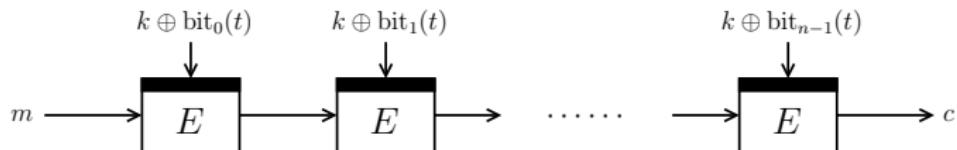

Somewhat Tweak-Rekeyability

- Tweak influence to key **present but limited**
- Say λ different E -instances


$$\mathbf{Adv}_{\tilde{E}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{rk}}(\sigma q, t)}_{\substack{\approx \lambda t / 2^n \\ (\text{close to optimal})}} + \underbrace{O(q/2^n)}_{\substack{\text{hopefully} \\ \text{optimal}}}$$

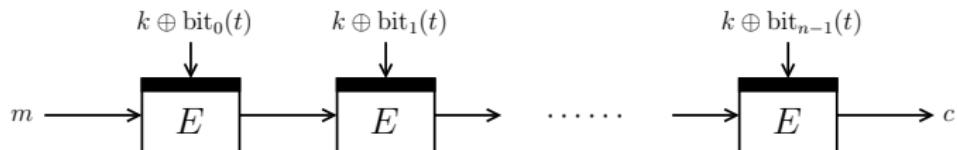
Naive Example

$$\mathbf{Adv}_{\tilde{E}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{rk}}(nq, t)}_{\approx \lambda t / 2^n} + \underbrace{O(\text{??})}_{\text{hopefully optimal}}$$


Naive Example

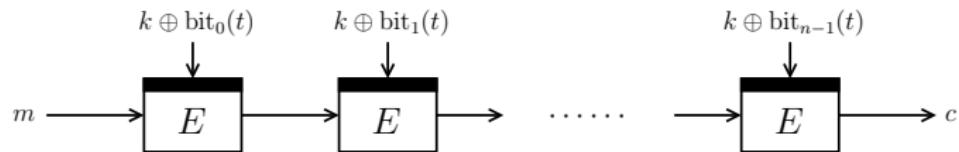
$$\mathbf{Adv}_{\tilde{E}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{rk}}(nq, t)}_{\approx \lambda t / 2^n} + \underbrace{O(\text{??})}_{\text{hopefully optimal}}$$

- $\lambda = 2$ different E -instances


Naive Example

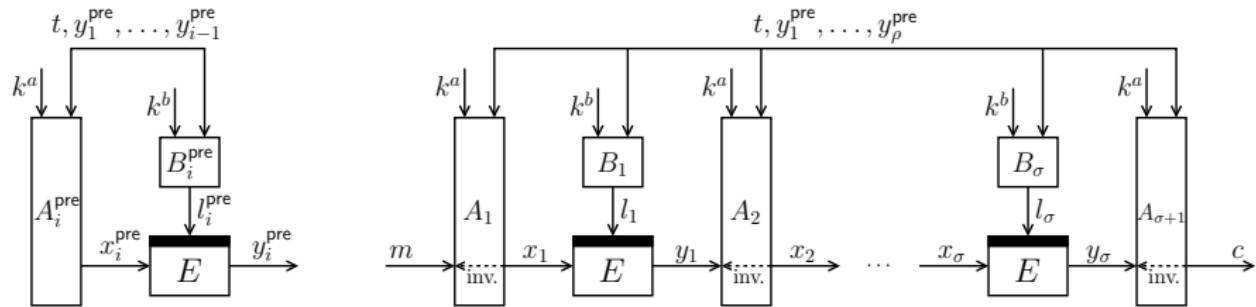
$$\mathbf{Adv}_{\tilde{E}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{rk}}(nq, t)}_{\approx 2t/2^n \text{ (optimal)}} + \underbrace{O(\text{??})}_{\text{hopefully optimal}}$$

- $\lambda = 2$ different E -instances


Naive Example

$$\mathbf{Adv}_{\tilde{E}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{rk}}(nq, t)}_{\approx 2t/2^n \text{ (optimal)}} + \underbrace{O(1)}_{\text{insecure}}$$

- $\lambda = 2$ different E -instances
- \tilde{E} is of course generically **insecure**


Naive Example

$$\mathbf{Adv}_{\tilde{E}}^{\text{sprp}}(q, t) \leq \underbrace{\mathbf{Adv}_E^{\text{rk}}(nq, t)}_{\approx 2t/2^n \text{ (optimal)}} + \underbrace{O(1)}_{\text{insecure}}$$

- $\lambda = 2$ different E -instances
- \tilde{E} is of course generically **insecure**
- Moreover: n blockcipher calls

Generalized Design

m -independent calls:
 $y_1^{\text{pre}}, \dots, y_{\rho}^{\text{pre}}$

processing of m :
 c

- A_i need to be invertible
- Some uniformity conditions on B_i apply
- Mixing functions can be anything otherwise

Generalized Impossibility

If the generic standard-to-ideal reduction is employed,
optimal standard-model security **with** tweak-rekeying
is at least as hard as **without** tweak-rekeying

Generalized Impossibility

If the generic standard-to-ideal reduction is employed, optimal standard-model security **with** tweak-rekeying is at least as hard as **without** tweak-rekeying

Proof Idea

- Consider any reasonable **tweak-rekeyable** scheme

Generalized Impossibility

If the generic standard-to-ideal reduction is employed, optimal standard-model security **with** tweak-rekeying is at least as hard as **without** tweak-rekeying

Proof Idea

- Consider any reasonable **tweak-rekeyable** scheme
- Threshold for $\lambda = \# E$ -instances:

Generalized Impossibility

If the generic standard-to-ideal reduction is employed, optimal standard-model security **with** tweak-rekeying is at least as hard as **without** tweak-rekeying

Proof Idea

- Consider any reasonable **tweak-rekeyable** scheme
- Threshold for $\lambda = \# E$ -instances:
 - Too high: $\mathbf{Adv}_E^{\text{rk}}$ -term dominates and is non-optimal

Generalized Impossibility

If the generic standard-to-ideal reduction is employed, optimal standard-model security **with** tweak-rekeying is at least as hard as **without** tweak-rekeying

Proof Idea

- Consider any reasonable **tweak-rekeyable** scheme
- Threshold for $\lambda = \# E$ -instances:
 - Too high: $\mathbf{Adv}_E^{\text{rk}}$ -term dominates and is non-optimal
 - Too low:
 - For large set of tweaks: there is no tweak-rekeying
 - Scheme behaves like non-tweak-rekeyable one

Generalized Impossibility

If the generic standard-to-ideal reduction is employed, optimal standard-model security **with** tweak-rekeying is at least as hard as **without** tweak-rekeying

Proof Idea

- Consider any reasonable **tweak-rekeyable** scheme
- Threshold for $\lambda = \# E$ -instances:
 - Too high: $\mathbf{Adv}_E^{\text{rk}}$ -term dominates and is non-optimal
 - Too low:
 - For large set of tweaks: there is no tweak-rekeying
 - Scheme behaves like non-tweak-rekeyable one
- Even best trade-off will not be optimal!

Conclusion

Impossibility Result

- does **not** say that
 - the generic standard-to-ideal reduction is unavoidable
 - LRW2[σ]-conjecture holds
 - optimal security cannot be achieved
- but that provable optimality is **very unlikely**

Conclusion

Impossibility Result

- does **not** say that
 - the generic standard-to-ideal reduction is unavoidable
 - LRW2[σ]-conjecture holds
 - optimal security cannot be achieved
- but that provable optimality is **very unlikely**

Further Questions

- What does this mean for existing x-model results?
- Is the LRW2[σ]-conjecture reasonable?
- Can we salvage the generic standard-to-ideal reduction?

Thank you for your attention!