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• First suggested by Bellare et al. [BKR98]

• Secure up to 2n queries [BI99,Luc00,Pat08]

• Application: CENC, SCT

• Single permutation using domain separation
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Encrypted (Wegman-Carter) Davies-Meyer

EDM

x p1 p2 y

EWCDM

ν p1 p2 t

h(m)

• By Cogliati and Seurin [CS16]

• Secure up to 22n/3 queries

• Conjecture: optimal 2n security

• Message authentication using EWCDM
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Our Contribution

EDM and EWCDM (dashed)
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h(m)

EDMD

x p1 p2 y

scheme [CS16] now
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EWCDM 22n/3 2n/n

EDMD �� 2n

Backbone of analysis: mirror theory
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Mirror Theory

System of Equations

• Consider r distinct unknowns P = {P1, . . . , Pr}
• Consider a system of q equations of the form:

Pa1 ⊕ Pb1 = λ1

Pa2 ⊕ Pb2 = λ2
...

Paq ⊕ Pbq = λq

for some surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Goal

• Lower bound on the number of solutions to P
such that Pa 6= Pb for all distinct a, b ∈ {1, . . . , r}
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Mirror Theory

Patarin's Result

• Extremely powerful lower bound

• Has remained rather unknown since introduction (2003)

Authors Publication Application Mirror Bound

Patarin CRYPTO 2003 Feistel Suboptimal

Patarin CRYPTO 2004 Feistel
Patarin ICISC 2005 Feistel Optimal in O(·)
Patarin, Montreuil ICISC 2005 Benes
Patarin ICITS 2008 XoP
Patarin AFRICACRYPT 2008 Benes
Patarin ePrint 2010/287 XoP Concrete bound
Patarin ePrint 2010/293 Feistel
Patarin ePrint 2013/368 XoP
Cogliati, Lampe, Patarin FSE 2014 XoPd

Volte, Nachef, Marrière ePrint 2016/136 Feistel
Iwata, Mennink, Vizár ePrint 2016/1087 CENC
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Mirror Theory

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai ⊕ Pbi = λi

• Surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}
Graph Based View

Pa1 =Pa2
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Pb6
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Mirror Theory: Toy Example 1

• System of equations:
Pa ⊕ Pb = λ1
Pb ⊕ Pc = λ2

If λ1 = 0 or λ2 = 0 or λ1 = λ2

• Contradiction: Pa = Pb or Pb = Pc or Pa = Pc

• Scheme is degenerate

If λ1, λ2 6= 0 and λ1 6= λ2

• 2n choices for Pa

• Fixes Pb = λ1 ⊕ Pa (which is 6= Pa as desired)

• Fixes Pc = λ2 ⊕ Pb (which is 6= Pa, Pb as desired)

9 / 23
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Mirror Theory: Toy Example 2

• System of equations:
Pa ⊕ Pb = λ1
Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 6= 0

• 2n choices for Pa (which �xes Pb)

• For Pc and Pd we require
• Pc 6= Pa, Pb
• Pd = λ2 ⊕ Pc 6= Pa, Pb

• At least 2n − 4 choices for Pc (which �xes Pd)
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Mirror Theory: Toy Example 3

• System of equations:
Pa ⊕ Pb = λ1
Pb ⊕ Pc = λ2
Pc ⊕ Pa = λ3

• Assume λi 6= 0 and λi 6= λj

If λ1 ⊕ λ2 ⊕ λ3 6= 0

• Contradiction: equations sum to 0 = λ1 ⊕ λ2 ⊕ λ3
• Scheme contains a circle

If λ1 ⊕ λ2 ⊕ λ3 = 0

• One redundant equation, no contradiction
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Mirror Theory: Two Problematic Cases

Circle Degeneracy

Pa1 = Pb5

Pb1 = Pa2

Pb2 = Pa3

Pb3 = Pa4

Pb4 = Pa5

λ1

λ2

λ3

λ4

λ5

Pa1 =Pa2 Pb1

Pa3 =Pa4

Pb4 = Pa5

Pb2 =Pb3

λ1

λ2
λ3

λ4

Pa8

Pb7 = Pb8

λ1 ⊕ λ2 ⊕ · · · ⊕ λ7

Pb5 = Pa6

Pb6 = Pb7λ6
λ5

λ7
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Mirror Theory: Main Result

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai ⊕ Pbi = λi

• Surjection ϕ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Main Result

If the system of equations is circle-free and non-degenerate,
the number of solutions to P such that Pa 6= Pb for all distinct
a, b ∈ {1, . . . , r} is at least

(2n)r
2nq

provided the maximum tree size ξ satis�es (ξ−1)2 ·r ≤ 2n/67
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Mirror Theory Applied to XoP

x 1‖·

0‖·

p

p

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}

• Each tuple corresponds to xi 7→ p(0‖xi) =: Pai and
Each tuple corresponds to xi 7→ p(1‖xi) =: Pbi

• System of q equations Pai ⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns
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Mirror Theory Applied to XoP

Pa1

Pb1

Pa2

Pb2

Paq

Pbq

· · ·y1 y2 yq

Applying Mirror Theory

• Circle-free: no collisions in inputs to p

• Non-degenerate: provided that yi 6= 0 for all i

• Maximum tree size 2

• If 2q ≤ 2n/67: at least
(2n)2q
2nq solutions to unknowns
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Mirror Theory Applied to XoP

H-Coe�cient Technique [Pat91,Pat08,CS14]

Let ε ≥ 0 be such that for all good transcripts τ :

Pr [XoP gives τ ]

Pr [f gives τ ]
≥ 1− ε

Then, Advprf
XoP(q) ≤ ε+Pr [bad transcript for f ]

• Bad transcript: if yi = 0 for some i
• Pr [bad transcript for f ] = q/2n

• For any good transcript:

• Pr [XoP gives τ ] ≥ (2n)2q
2nq · 1

(2n)2q

• Pr [f gives τ ] = 1
2nq

Advprf
XoP(q) ≤ q/2

n

16 / 23
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EDM

x p1 p2

x

y

General Setting

• Adversary gets transcript τ = {(x1, y1), . . . , (xq, yq)}

• Xor of permutations in the middle

• Each tuple corresponds to xi 7→ p1(xi) =: Pai and
Each tuple corresponds to yi 7→ p−12 (yi) =: Pbi

• System of q equations Pai ⊕ Pbi = xi

• xi's all unique, yi's may collide
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EDM

Pa1

Pa2

Paξ1

Pb1

x
1

x2

xξ1

Paξ1+1

Paξ1+2

Paξ1+ξ2

Pb2

x
ξ
1+1

xξ1+2

xξ1
+ξ

2

· · ·

Paq�ξs+1

Paq�ξs+2

Paq

Pbs

x
q�ξ

s+1

xq�ξs+2

xq

Applying Relaxed Mirror Theory

• Circle-free: no collisions in inputs to p1

• Non-degenerate: as xi 6= xj for all i 6= j

• Max tree size ξ + 1: provided no (ξ + 1)-fold collision

• If ξ2q ≤ 2n/67: at least
(2n)s·(2n−1)q

2nq solutions to unknowns

• H-coe�cient technique: Advprf
EDM(q) ≤ q/2n +

(
q
ξ+1

)
/2nξ
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EWCDM

ν p1 p2

ν

t

h(m)

General Setting

• Adversary gets transcript τ = {(ν1,m1, t1), . . . , (νq,mq, tq)}

• Each tuple corresponds to νi 7→ p1(νi) =: Pai and
Each tuple corresponds to ti 7→ p−12 (ti) =: Pbi

• System of q equations Pai ⊕ Pbi = νi ⊕ h(mi)

• Extra issue: νi ⊕ h(mi) may collide
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EWCDM

Pa1

Pa2

Paξ1

Pb1

ν
1 ⊕

h(m
1 )

ν2 ⊕ h(m2)

νξ1
⊕ h

(m
ξ1
)

Paξ1+1

Paξ1+2

Paξ1+ξ2

Pb2

ν
ξ
1+1 ⊕

h(m
ξ
1+1 )νξ1+2 ⊕ h(mξ1+2)

νξ1+
ξ2
⊕ h

(m
ξ1
+ξ2

)
· · ·

Paq�ξs+1

Paq�ξs+2

Paq

Pbs

νq�ξs+1 ⊕ h(m
q�ξs+1)

νq�ξs+2 ⊕ h(mq�ξs+2)

νq
⊕ h

(m
q)

Applying Relaxed Mirror Theory

• Circle-free: no collisions in inputs to p1

• Non-degenerate: provided νi ⊕ h(mi) 6= νj ⊕ h(mj) in all trees

• Max tree size ξ + 1: provided no (ξ + 1)-fold collision

• If ξ2q ≤ 2n/67: Advprf
EWCDM(q) ≤ q/2n +

(
q
2

)
ε/2n +

(
q
ξ+1

)
/2nξ
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EDMD

x p1 p2 y

x p1 p2

p1

y x p3

p1

y

identical equivalent

• EDMD is at least as secure as XoP

• If q ≤ 2n/67: Advprf
EDMD(D) ≤ q/2n
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Single-Key Variants?

E(WC)DM

x p1 p2 y

h(m)

• �XoP in the middle�
relies on inverting p2

• Trick fails if p1 = p2

EDMD

x p1 p2 y

• p1, p2 independent:
cascading has limited in�uence

• Sliding issues if p1 = p2

Conjecture: optimal 2n security
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Conclusion

Mirror Theory

• Powerful but underestimated technique

• Implies (almost) optimal security of E(WC)DM

• Implies optimal security of EDMD

Open Questions

• Single-key variants?

• Dual of EWCDM?

• Further applications

Thank you for your attention!
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Pseudorandom Permutation
9 indistsimpleEnoD

ICEk p
blockcipher random permutation

• Two oracles: Ek (for secret random key k) and p

• Distinguisher D has query access to either Ek or p

• D tries to determine which oracle it communicates with

Advprp
E (D) =

∣∣Pr
[
DEk = 1

]
−Pr [Dp = 1]

∣∣
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Pseudorandom Function
5 indistsimpleF

ICFk f

distinguisher D

one-way function random function

• Two oracles: Fk (for secret random key k) and f

• Distinguisher D has query access to either Fk or f

• D tries to determine which oracle it communicates with

Advprf
F (D) =

∣∣∣Pr
[
DFk = 1

]
−Pr

[
Df = 1

]∣∣∣
26 / 23



Counter Mode Based on Pseudorandom Permutation

n+ 1 n+ 2 n+ `

Ek Ek · · · · · · Ek

m1

c1

m2

c2

m`

c`

• Security bound:

Advcpa
CTR[E](σ) ≤ Advprp

E (σ) +

(
σ

2

)
/2n

• CTR[E] is secure as long as:
• Ek is a secure PRP
• Number of encrypted blocks σ � 2n/2
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Counter Mode Based on Pseudorandom Function

n+ 1 n+ 2 n+ `

Fk Fk · · · · · · Fk

m1

c1

m2

c2

m`

c`

• Security bound:

Advcpa
CTR[F ](σ) ≤ Advprf

F (σ)

• CTR[F ] is secure as long as Fk is a secure PRF

• Birthday bound security loss disappeared
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Counter Mode Based on XoP

· · · · · ·Ek Ek Ek Ek Ek Ek

0‖n+1 1‖n+1 0‖n+2 1‖n+2 0‖n+` 1‖n+`

m1

c1

m2

c2

m`

c`

• Security bound:

Advcpa
CTR[XoP](σ) ≤ Advprf

XoP(σ)

≤ Advprp
E (2σ) + σ/2n

• Beyond birthday-bound but 2x as expensive as CTR[E]
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CENC by Iwata [Iwa06]
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• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• 2006: 22n/3 security, 2n/w conjectured [Iwa06]

• 2016: 2n/w security [IMV16]
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Mirror Theory Applied to CENC
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q

Applying Mirror Theory

• Circle-free: no collisions in inputs to p

• Non-degenerate: provided that yi 6= 0 for all i
Non-degenerate: and yi 6= yj within all w-blocks

• Maximum tree size w + 1

• If 2w2q ≤ 2n/67: at least (2n)r
2nq solutions to unknowns

• H-coe�cient technique: Advcpa
CENC(q) ≤ q/2n + wq/2n+1
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Naive PRP-PRF Conversion
7 indistsimpleSwitch

ICFk = Ek f

distinguisher D

blockcipher random function

PRP-PRF Switch

• Simply view Ek as a PRF

• Ek does not expose collisions but f does

• Ek can be distinguished from f in ≈ 2n/2 queries(
q

2

)
/2n . Advprf

E (q) ≤ Advprp
E (q) +

(
q

2

)
/2n
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Beyond Birthday Bound PRP-PRF Conversion: Truncation

Truncation

x p2

p1

trunc

trunc

y‖

• First suggested by Hall et al. [HWKS98]

• Secure up to 23n/4 queries [Sta78,BI99,GG16]

• Application: GCM-SIV
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