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Xor of Permutations
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o First suggested by Bellare et al. [BKR98]
e Secure up to 2" queries [BI99,Luc00,Pat08]
e Application: CENC, SCT
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Xor of Permutations Xor of Single Permutation

=y -
T P2 —~b— Y x G%y

First suggested by Bellare et al. [BKR98]
Secure up to 2" queries [BI99,Luc00,Pat08]
Application: CENC, SCT

Single permutation using domain separation
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Encrypted (Wegman-Carter) Davies-Meyer

EDM

e By Cogliati and Seurin [CS16]
e Secure up to 22/3 queries
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Encrypted (Wegman-Carter) Davies-Meyer

EDM EWCDM

x b D2 ) v D1 D2 t
h(m)

By Cogliati and Seurin [CS16]

e Secure up to 22/3 queries

Conjecture: optimal 2" security
e Message authentication using EWCDM
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Our Contribution

EDM and EWCDM (dashed) EDMD
X b1 D2 Yy X b1 p2
h(m) - \
Earlier proposal
EWCDMD removed after

scheme [CS16] now observation by Nandi
EDM 22n/3 - 2n/n
EWCDM 227/3  on/p
EDMD —_— 2™

Backbone of analysis:

mirror theory
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Mirror Theory

System of Equations
e Consider r distinct unknowns P = {Py,..., P}

e Consider a system of ¢ equations of the form:

Pa1 @Pbl :)\1
Pag @Pbg = )\2
Paq @qu :>\q
for some surjection ¢ : {a1,b1,...,aq,bq} = {1,...
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System of Equations
e Consider r distinct unknowns P = {Py,..., P}

e Consider a system of ¢ equations of the form:

Pa1 @Pbl :)\1
Pag @Pbg = )\2
Paq @qu :)‘q
for some surjection ¢ : {a1,b1,...,aq4, b5} = {1,...,7}

Goal

e Lower bound on the number of solutions to P
such that P, # P, for all distinct a,b € {1,...,r}
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Mirror Theory

System of Equations

e r distinct unknowns P = {P, ...

B}

e System of equations P,, ® Py, = \;

e Surjection ¢ : {a1, b1, ...
Graph Based View

,agq,bgt — {1,...,r}

Py,
A
/ P
Pu =P, N Py \ /
A2
M\ A =Py =Py =Pay,
Py, =P, =D, P, =P, /
A1t
/ Py, Payo
P, Py,
Py,
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Mirror Theory: Toy Example 1

e System of equations:
Po® Py=X\
Pb @ Pc = )\2

A1

P,

S
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P

If>\1:00r)\2:00r)\1:}\2
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e Scheme is degenerate
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Mirror Theory: Toy Example 1

e System of equations: F, P,
Po®Py=X\ /
Py® P.= )y Ao
fXi1=00r Ao =00r A\ = Ao
e Contradiction: P, = Pyor P, = P.or P, = P.
e Scheme is degenerate
If A1, A2 Z 0 and \; # )Xo
e 2" choices for P,

e Fixes P, = A\; & P, (which is # P, as desired)
e Fixes P, = Ao & P, (which is # P,, P, as desired)
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Mirror Theory: Toy Example 2

e System of equations:
Po® Py=X\
Pe®Py= X

At

P,
A2

Py
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A2
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e System of equations: P,
Po® Py=X\ »
Pe®Py= X ‘

fXi1=0o0rX=0
e Contradiction: P, = P, or P, =P,
e Scheme is degenerate

If A1, A2 #0
e 2" choices for P, (which fixes P,)

A1

P,
A2

Py
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e System of equations: P,
Po® Py=X\ »
Pe®Py= X ‘

fXi1=0o0rX=0
e Contradiction: P, = P, or P, =P,
e Scheme is degenerate

If A1, A2 #0
e 2" choices for P, (which fixes P,)
e For P, and P, we require

° PC#P(lan
o Pd:)\Q@PC#Pa,Pb
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Mirror Theory: Toy Example 2

e System of equations:
Po® Py=X\
Pe®Py= X

If>\1:00r)\2:0

A1

A2

e Contradiction: P, = P, or P, =P,

e Scheme is degenerate
If A1, A2 #0

e 2" choices for P, (which fixes P,)

e For P. and P; we require
° PC # P(la Pb

o Pd:)\Z@Pc#Paapb

o At least 2" — 4 choices for P, (which fixes Py)
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Mirror Theory: Toy Example 3

e System of equations: F, P,
Po®Py=X\ \ /
Py® P.= )y Az A2
P.® P, = )3 P.

e Assume \; # 0 and \; #
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Mirror Theory: Toy Example 3

e System of equations: F, P,
Po® Py =\ \ /
Py® P.= )y Az A2
P.® P, = )3 P.

e Assume \; # 0 and \; #

X1 BA2B A3 #0
e Contradiction: equations sum to 0 = A1 & Ao @ A3

e Scheme contains a circle
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Mirror Theory: Toy Example 3

e System of equations: P, & P,
P,eP =)\ \\\\\\\ ///////
P,®d P.= X\ A3 Ao
P.®oP,=)3 P,

e Assume \; # 0 and \; #

XL DA2DA3#D0
e Contradiction: equations sum to 0 = A1 & Ao @ A3
e Scheme contains a circle

X1 DA DA3=0

e One redundant equation, no contradiction
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Mirror Theory: Two Problematic Cases

Circle
- P(ll

Ao

\
= Pa3

a1 = Pb5 A3
x Py, =Py,
5
/)\4
Py, = Pa,

Degeneracy

A
Py, =Py, L p, P,
% ) MBA @ DA

3
PI12 :P.bg Pa3 = Pa4
P,, =P,
A4 X
Pb4 = Tas s
~2 X Py=hy,
Py=Po
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Mirror Theory: Main Result

System of Equations
e r distinct unknowns P = {Py,..., P}
e System of equations P,, & P, = \;
e Surjection ¢ : {a1,b1,...,aq,04} = {1,...,7}

Main Result

If the system of equations is circle-free and non-degenerate,
the number of solutions to P such that P, # P, for all distinct
a,be{l,...,r} is at least

(2")r
214

provided the maximum tree size ¢ satisfies (¢—1)2-r < 27 /67
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Mirror Theory Applied to XoP

o P
A b,

General Setting

e Adversary gets transcript 7 = {(z1,41), ..., (24, Yq)}
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Mirror Theory Applied to XoP

o P
A,

General Setting

e Adversary gets transcript 7 = {(z1,41), ..., (24, Yq)}

e Each tuple corresponds to z; — p(0||z;) =: P,, and
x; — p(1]|zi) =: P,

e System of ¢ equations Py, ® P, = y;

e Inputs to p are all distinct: 2¢ unknowns
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Mirror Theory Applied to XoP

Py, Py, P,

q

Y2 Yq

by, b, Py,
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Mirror Theory Applied to XoP

by, b, Py,

Applying Mirror Theory
e Circle-free: no collisions in inputs to p
e Non-degenerate: provided that y; # 0 for all i

e Maximum tree size 2
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Applying Mirror Theory
e Circle-free: no collisions in inputs to p
e Non-degenerate: provided that y; # 0 for all i

e Maximum tree size 2

o If 2¢ < 2"/67: at least (227;)5" solutions to unknowns
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]
Pr[f gives 7]

>1—¢

Then, Advg)(fp(q) < ¢ + Pr [bad transcript for f]
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e For any good transcript:

n
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat91,Pat08,CS14]
Let € > 0 be such that for all good transcripts 7:

Pr [XoP gives 7]

>1-
Pr(f gives 7] — c

Then, Advg)(fp(q) < ¢ + Pr [bad transcript for f]

e Bad transcript: if y; = 0 for some i
e Pr[bad transcript for f] = ¢/2"
e For any good transcript:
. (2")
o Pr[XoP gives 7] > 52¢ . 1 } c—0

(2)2q
o Prf gives 7] = 5L

AdV?(fP(Q) <q/2"
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EDM

General Setting

e Adversary gets transcript 7 = {(z1, 1),
e Xor of permutations in the middle

e Each tuple corresponds to x; — p1(z;) =:
yi =y (yi) = By,

D— 8

D2

e System of ¢ equations Py, ® P, = z;

ooy (g, 9g)
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EDM

General Setting
e Adversary gets transcript 7 = {(x1,41), ..., (Zq.Yq) }
e Xor of permutations in the middle
e Each tuple corresponds to z; — p1(z;) =: P,, and
yi =y (yi) = By,
e System of ¢ equations Py, ® P, = z;

e x;'s all unique, y;'s may collide

17 /23



EDM

L. %
By,

agy Pa£1+€z Paq
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EDM

Py, P,

gt g-got1
2
Rz &
2 Gy 3
Pa, —fz N\ Pagyro 76& Py eoin %
= hy, = b, = h,
T 4&3& > 9
£ agy £ ESR Fa,

/\covers independent permutations

Applying Relaxed Mirror Theory
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EDM

Pal Pa£1+l qufss‘H
2
Rz &
& Sy Sy
Pa, l\ P“Eﬁ‘l % Pa(rsw %
——n, ——n, —n,
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Applying Relaxed Mirror Theory
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Applying Relaxed Mirror Theory

o Circle-free: no collisions in inputs to p;

e Non-degenerate: as x; # x; for all i # j
o Max tree size £ + 1: provided no (£ + 1)-fold collision

o If £2q < 27/67: at least W*ﬂq solutions to unknowns
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EDM

P, agi+1
2
Sr%
FPagyia ’f&
= hy
5
s
P,

g rten

Applying Relaxed Mirror Theory

o Circle-free: no collisions in inputs to p;

e Non-degenerate: as x; # x; for all i # j

Max tree size £ + 1: provided no (£ + 1)-fold collision

If £2q < 27/67: at least W*ﬂq solutions to unknowns

() < aq/2" + (1,)/2%

H-coefficient technique: Adv

prf

EDM

Pa‘,,g 2 %

=B,

P,

q

/\covers independent permutations
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EWCDM

v P1 —— P2 t
h(m)
General Setting
e Adversary gets transcript 7 = {(v1,m1,t1),. .., (Vg, Mg, tq)}
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v
vV —P1 P P2 t
h(m)
General Setting
e Adversary gets transcript 7 = {(v1,m1,t1),. .., (Vg, Mg, tq)}

e Each tuple corresponds to v; — pi(v;) =: P,, and
ti = py (t;) =: Py,
e System of ¢ equations P, & P, = v; & h(m;)
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EWCDM

v
vV —P1 P P2 t
h(m) ————
General Setting
e Adversary gets transcript 7 = {(v1,m1,t1),. .., (Vg, Mg, tq)}

e Each tuple corresponds to v; — pi(v;) =: P,, and
ti = py (t;) =: Py,
e System of ¢ equations P, & P, = v; & h(m;)

e Extra issue: v; @ h(m;) may collide
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a,
% Sy &
® 8
L4, %, 24
% 7,
2 Y P, e Ly Ly 9\&‘*’)
P, % g2 % Fayeoi %
T o, el
A -7 o ---
\ V& 0 Ny ﬂ
Y @“\ ®\\k‘“
v \/@x& va
Fag, Pagyic, Fa,

Applying Relaxed Mirror Theory
e Circle-free: no collisions in inputs to p;
e Non-degenerate: provided v; @ h(m;) # v @ h(m;) in all trees
e Max tree size £ + 1: provided no (£ + 1)-fold collision
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Pa, F

agn Gogst
% 1ty 2,
° 3
L4, %, 24
%) Q‘u, /) Yoe, 2%
. a2 A
Py, % Pagppa % Pag-ea %
/_/,</Pb1 B Pb2 - Pb
- B - 3 -
®“\‘° @\\\“\‘tx \\k‘““
N - va
P, Pagyicy Fa,

Applying Relaxed Mirror Theory

e Circle-free: no collisions in inputs to p;

e Non-degenerate: provided v; @ h(m;) # v @ h(m;) in all trees
e Max tree size £ + 1: provided no (£ + 1)-fold collision

[ ]

If £2q < 2"/67: AdvRycom(a) < /2" + (9)e/2" + (e1,)/2m¢
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EDMD
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EDMD

=5
xa == x —

identical
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EDMD

e =
x —{p1H-{p2 oy x—pL P2 ey x —p3 -y
\_/ \_/

identical equivalent
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EDMD

I=a =
ooty o npple-y o mle
N "

identical equivalent

e EDMD is at least as secure as XoP
o If ¢ <27/67: AdvPip(D) < q/2"

Y
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Single-Key Variants?

E(WC)DM

T D1 —p—| P2 Y

e “XoP in the middle”
relies on inverting po

e Trick fails if p1 = po
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h(m) ----------
e “XoP in the middle” e p1,po independent:
relies on inverting ps cascading has limited influence
e Trick fails if p1 = po e Sliding issues if p1 = po

Conjecture: optimal 2" security
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Conclusion

Mirror Theory
e Powerful but underestimated technique
e Implies (almost) optimal security of E(WC)DM
e Implies optimal security of EDMD

Open Questions
e Single-key variants?
e Dual of EWCDM?

e Further applications

Thank you for your attention!
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Pseudorandom Permutation

E,

blockcipher

p

random permutation

e Two oracles: Ej (for secret random key k) and p
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Pseudorandom Permutation

Ej,

blockcipher

p

random permutation

distinguisher D

e Two oracles: Ej (for secret random key k) and p
e Distinguisher D has query access to either E}, or p

e D tries to determine which oracle it communicates with

AdviP(D) = |Pr [DFk = 1] — Pr[DP = 1]



Pseudorandom Function

Fy,

one-way function

f

random function

distinguisher D

e Two oracles: F}; (for secret random key k) and f
e Distinguisher D has query access to either F or f

e D tries to determine which oracle it communicates with

Advy (D) = [Pr [P = 1] — Pr [P/ = 1]|
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Counter Mode Based on Pseudorandom Permutation

Ek Ek} ...... Ek
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Counter Mode Based on Pseudorandom Permutation

Ek Ek ...... Ek
[e1] [c2] [e]

e Security bound:

cpa T o n
AdVCpTR[E} (0) < AdvRP(0) + <2>/2
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Counter Mode Based on Pseudorandom Permutation

Ep Ey

...... Ek

e Security bound:

cpa T o n
AdVCpTR[E}(U) < AdviP(o) + <2> /2

e CTR[E] is secure as long as:

e [ is a secure PRP
e Number of encrypted blocks o < 27/2
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Counter Mode Based on Pseudorandom Permutation

E; E.| e Ey

e m; @ ¢; is distinct for all o blocks

e Unlikely to happen for random string
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Counter Mode Based on Pseudorandom Permutation

Ek Ek ...... E/C
[e1] [c2] [ct]

e m; @ ¢; is distinct for all o blocks
e Unlikely to happen for random string
e Distinguishing attack in o &~ 2"/2 blocks:

o n
( 2) /2 S AdvEL (o)

28 /23



Counter Mode Based on Pseudorandom Function

Fk} Fk ...... Fk
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Counter Mode Based on Pseudorandom Function

F, F,

...... Fk

e Security bound:

cpa rf
Adv g (0) < Advi (o)
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Counter Mode Based on Pseudorandom Function

F, F,

...... Fk

e Security bound:

cpa rf
AdVCI')I'R[F] (o) < Adv} (o)

e CTR[F] is secure as long as Fj, is a secure PRF
e Birthday bound security loss disappeared
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Counter Mode Based on XoP

‘mm+1“mn+W‘mm+2“wn+ﬂ

Ey,

Ey,

Ey,

Ey,

EOREAY

e Security bound:

Adv X2,

CTR[XoP

[(0) < Adviip(0)
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Counter Mode Based on XoP

‘mm+1“mn+W‘mm+2“wn+ﬂ

e Security bound:

Adv X2,

CTR[XoP]

E. || B || B | | Ex
\ﬁ/

(0) < Adviip(0)

< AdviP(20) 4+ o/27
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Counter Mode Based on XoP

[olln+1] [1ln+1] [oln+2] [Ln+2]
) I

Ek Ek Ek Ek """ Ek Ek
\j/ \f/

e Security bound:
cpa rf
AdVCI')I'R[XoP} (0) < Advip(o)
< AdviP(20) 4+ o/27

e Beyond birthday-bound but 2x as expensive as CTR[E]
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CENC by Iwata [iwaos]

‘(]Hn\l‘ ‘1|\n+1‘ ‘()HnJrl‘ ‘1Hn+2‘ \n\ n+l‘ ‘1|\n+w‘ ‘(JHN+2H1Hn+u:+1‘

Ey, E, Eg | oo Ey, Ey, Ex

\ / e \Ef/

[} /@ (]

e One subkey used for w > 1 encryptions
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CENC by Iwata [iwaos]

‘(]Hn\l‘ ‘1|\n+1‘ ‘()HHJA‘ ‘1Hn+2‘ \n\ n+l‘ ‘1|\n+w‘ ‘(!Hn+2H1Hn+w+l‘

Ey, E, Eg | oo Ey, Ey, Ex

\ / e \Ef/

E/E

e One subkey used for w > 1 encryptions

e Almost as expensive as CTR[E]
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CENC by Iwata [iwaos]

‘(]Hn\l‘ ‘1|\n+1‘ ‘()H/Hrl‘ ‘1Hn+2‘ \n\ n+l‘ ‘1|\n+w‘ ‘(!Hn+2H1Hn+w+l‘

£y, By, Ex Eg | oo Ey, Ey, Ey

VS S S <~
@T/@T wﬂf

e One subkey used for w > 1 encryptions
e Almost as expensive as CTR[E]
e 2006: 22"/3 security, 2" /w conjectured [lwa06]

31/23



CENC by Iwata [iwaos]

[oln-+1] [1ln+1] [0ln+1] [Lln+2
Ey Ey. Ey Ey
1] \T/ ] \?/

‘ 0|n+1 ‘ ‘ 1|n+w ‘

‘ 0ljn+2 H 1fln+w+1 ‘

Ey,

Ey,

Ey

/

7nw+1

One subkey used for w > 1 encryptions

Almost as expensive as CTR[E]

\Ef/

2006: 22"/3 security, 2" /w conjectured [lwa06]
2016: 2" /w security [IMV16]
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Mirror Theory Applied to CENC

Pbl
f\)\
% e
Y,
P, \\73 Py,
y
b,

wa+1

N
X
S

x> Pb“’“

b,

N g-w+1

«
2
gt By bg-w+2

q

qfw

quwurs

QK\' r,
h

1)
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Mirror Theory Applied to CENC

By, wa+1

)g W
X2 By b2

2 2 Yw

Applying Mirror Theory

e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
and y; # y; within all w-blocks

e Maximum tree size w + 1
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Mirror Theory Applied to CENC

By, wa+l

)g W
X2 By b2

2 2 Y

Applying Mirror Theory

e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
and y; # y; within all w-blocks

e Maximum tree size w + 1

o If 2uw?q < 27/67: at least (g:)

” solutions to unknowns
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Mirror Theory Applied to CENC

wa+l N qu—t +1
o %
Wy N s
T Py is =5 Pyrin
Pa, O Pbm+$ e Pﬁ«;/w N H’q*wi»ﬂ
B,

Applying Mirror Theory
e Circle-free: no collisions in inputs to p

e Non-degenerate: provided that y; # 0 for all i
and y; # y; within all w-blocks

e Maximum tree size w + 1
If 2w?q < 27/67: at least (gzg’” solutions to unknowns

H-coefficient technique: Advgnc(9) < ¢/2" + wg/2™ T

32/23



Naive PRP-PRF Conversion

I, = Ej

blockcipher

f

random function

distinguisher D

PRP-PRF Switch
e Simply view Ej as a PRF
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Naive PRP-PRF Conversion

I, = Ej

blockcipher

f

random function

distinguisher D

PRP-PRF Switch
e Simply view Ej as a PRF
e FE}. does not expose collisions but f does

e Ej, can be distinguished from f in ~ 2"/2 queries

<g) /2" S Advy (@) < AdviP() + (g) /2
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Beyond Birthday Bound PRP-PRF Conversion: Truncation

Truncation

D1

l

D2

——%trunc %1

a‘ trunc m— y

o First suggested by Hall et al. [HWKS98]
e Secure up to 23"/ queries [Sta78,B199,GG16]
o Application: GCM-SIV
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