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Black-Box Security and Side-Channel Attacks

A

ModeK

query response

• Cryptographic modes are usually analyzed in black-box setting

• However, evaluations may leak secret information
• Two main types of countermeasures:

• Protection at implementation-level: masking or hiding
• Protection at mode-level: leakage resilience
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Example: Message Authentication (1/2)

FKS: Full-state Keyed Sponge (Simplified) [BDPV12,GPT15,MRV15]
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• Very efficient
• No mode-level protection against side-channel attacks
• Requires implementation-level protection
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Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]
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• Processes key at the end
• Minimizes number of evaluations of secret states
• Leakage resilient if G and P leak up to λ bits of secrecy (per evaluation)

How does SuKS verify tags?
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Closer Look at SuKS

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]
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Tag Verification
• Given message/tag tuple (M,T ?):

• Compute T = SuKS(K,M)
• If T ? = T return 1, otherwise return 0

• Verification might leak information about T !
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Leakage from Value Comparison

• Leakage resilience usually centers around MAC/AE design
• Tag verification often left out of scope
• Assumed to be protected at implementation level

• But MAC design already uses protected primitive
• Why not re-use it for verification?

Formal analysis of leakage resilient value comparison
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Modeling Value Comparison: Black-Box

• Plain target verification works:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Adversary making q queries
wins with probability at most q/2t
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Modeling Value Comparison: Leaky Setting

• Adversary gains leakage per oracle evaluation

• Plain target verification fails:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Oracle might leak λ bits of Tj per query
• Tj is obtained after dt/λe queries

• A more sophisticated oracle O needed!
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Modeling Value Comparison: General Model

General Model
• µ random target values T1, . . . , Tµ
• µ salts S1, . . . , Sµ

• In principle unique
• Randomization or omission possible
• In applications, salts are often present

• O is some verification oracle
• Adversary A can make attempts (j, T ?) 7→ 0/1

• A also obtains leakage:
• Evaluation of cryptographic primitive within
O may leak λ bits (non-adaptively)

• Each value comparison may leak λ bits
(non-adaptively)
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PVP: Permutation-Based Value Processing (1/2)
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• Let P be an n-bit permutation
• Consider value comparison

O : (j, T ?) 7→
r
leftu(P(Sj ‖ Tj ‖ 0∗))

?
= leftu(P(Sj ‖ T ? ‖ 0∗))

z

• PVP gives leakage resilient value comparison
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PVP: Permutation-Based Value Processing (2/2)
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• If P is a public permutation (e.g., Keccak-f):
• We require t, u� n, but typically n is large enough
• Similar to earlier suggestion of designers of ISAP [DEM+19]

• If P is a secret permutation (e.g., AESK):
• No limitation on t, u
• Better security bound but one needs protected AESK
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TPVP: Tweakable Permutation-Based Value Processing
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• Let TP be an n-bit tweakable permutation with r-bit tweaks
• Consider value comparison
O : (j, T ?) 7→

r
leftu(TP(Sj ‖ 0∗, Tj ‖ 0∗))

?
= leftu(TP(Sj ‖ 0∗, T ? ‖ 0∗))

z

• TPVP gives leakage resilient value comparison

• Same conditions on t, u apply
• TPVP with secret permutation was used in Spook [BBB+19]
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SuKS-then-PVP (StP)
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︸ ︷︷ ︸
SuKS

︸ ︷︷ ︸
PVP

• Natural combination of SuKS and PVP
• Salt taken from keyless computation of SuKS

• Sufficiently random
• Non-secret to adversary

• Leakage resilience of StP follows from that of SuKS and of PVP
• Disadvantage of composition: independent primitives P and P′ needed
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Hash-then-Function-then-Function (HaFuFu)
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• H is hash function and F is secret random function
• HaFuFu: uses same F for MAC and for verification
• Salt taken from keyless computation of H
• Leakage resilience of HaFuFu: as before, but dedicated proof needed
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Conclusion

Value Comparison
• Prominent role in tag verification
• Further applications in fault countermeasures
• Can be done efficiently by re-using existing resources
• Processed value comparison leads to slightly larger success probability

More in Paper
• Exact leakage resilience analysis
• Security assumptions
• Relaxation of salt

Thank you for your attention!
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