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e Cryptographic modes are usually analyzed in black-box setting
® However, evaluations may leak secret information

® Two main types of countermeasures:

® Protection at implementation-level: masking or hiding
® Protection at mode-level: leakage resilience
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Example: Message Authentication (1/2)

FKS: Full-state Keyed Sponge (Simplified) [BDPV12,GPT15,MRV15]

KM, M, M,
L_H J‘L Pl J‘L

® No mode-level protection against side-channel attacks

e Very efficient

® Requires implementation-level protection
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Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

My M,

® Processes key at the end
® Minimizes number of evaluations of secret states

® | eakage resilient if G and P leak up to A bits of secrecy (per evaluation)
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Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

My M,

® Processes key at the end
® Minimizes number of evaluations of secret states

® | eakage resilient if G and P leak up to A bits of secrecy (per evaluation)

How does SuKS verify tags?
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Closer Look at SuKS

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

M, M,

Tag Verification
¢ Given message/tag tuple (M, T™):
® Compute T = SuKS(K, M)
® |f T* =T return 1, otherwise return 0
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SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

M, M,

Tag Verification
¢ Given message/tag tuple (M, T™):
® Compute T = SuKS(K, M)
® |f T* =T return 1, otherwise return 0

e \erification might leak information about T

5/15



Leakage from Value Comparison

¢ |eakage resilience usually centers around MAC/AE design
e Tag verification often left out of scope

® Assumed to be protected at implementation level
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Leakage from Value Comparison

Leakage resilience usually centers around MAC/AE design

Tag verification often left out of scope

Assumed to be protected at implementation level

But MAC design already uses protected primitive

Why not re-use it for verification?

Formal analysis of leakage resilient value comparison
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Modeling Value Comparison
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Modeling Value Comparison: Black-Box

random t-bit targets
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(wins if it receives a 1)

® Plain target verification works:
O (5,T%) — [[TJ z T*H

e Adversary making ¢ queries
wins with probability at most ¢/2°
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Modeling Value Comparison: Leaky Setting

random t-bit targets
Ti,...,T,

e Adversary gains leakage per oracle evaluation
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Modeling Value Comparison: Leaky Setting

random t-bit targets
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(wins if it receives a 1)

e Adversary gains leakage per oracle evaluation

® Plain target verification fails:
0: (1)~ |1; £ 1]
® Oracle might leak X bits of T); per query
® T} is obtained after [t/\] queries

® A more sophisticated oracle O needed!
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Modeling Value Comparison: General Model

General Model

random ¢-bit targets ® 4 random target values 17, ..., T},
Ty,...,T,

A ® psalts Sp,...,5,
v ® |n principle unique

. . ® Randomization or omission possible

arbitrary s-bit salts e
SiyeesSy 77 O ® In applications, salts are often present
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Modeling Value Comparison: General Model

random t-bit targets
Ti,...,T,
|
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General Model

1 random target values T, ...

psalts Si,...,S,
® |n principle unique

® Randomization or omission possible
® In applications, salts are often present

O is some verification oracle

Adversary A can make attempts (j,7*) — 0/1

A also obtains leakage:

® Evaluation of cryptographic primitive within
O may leak A bits (non-adaptively)
® Each value comparison may leak A bits

(non-adaptively)

Ty
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PVP: Permutation-Based Value Processing (1/2)

® |et P be an n-bit permutation

e Consider value comparison

O: (. T%) = [leftu(P(S; | Ty | 0) = lefe (P(S; || 7* [ 07))]
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PVP: Permutation-Based Value Processing (1/2)

S U=U* S
T — P P kT
RETEY _ n- —=t

® |et P be an n-bit permutation

e Consider value comparison
- * * ? * *
O (G.T7) = [lefea(P(S; 1| Ty 1 07)) £ leftu(P(S; 1| T[] 07))]

® PVP gives leakage resilient value comparison
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PVP: Permutation-Based Value Processing (2/2)

ISR '
S U=U* S
T —+— P P kT
0 L=t - = —=—0
—/ —

e If P is a public permutation (e.g., Keccak-f):

® We require t,u < n, but typically n is large enough
® Similar to earlier suggestion of designers of ISAP [DEM+19]
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PVP: Permutation-Based Value Processing (2/2)

ISR '
S U=U* S
T —+— P P kT
0 L=t - = —=—0
—/ —

e If P is a public permutation (e.g., Keccak-f):

® We require t,u < n, but typically n is large enough
® Similar to earlier suggestion of designers of ISAP [DEM+19]

e If P is a secret permutation (e.g., AESk):

® No limitation on ¢, u
® Better security bound but one needs protected AES
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TPVP: Tweakable Permutation-Based Value Processing
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® Let TP be an n-bit tweakable permutation with r-bit tweaks

e Consider value comparison
. * * * ? * * *
O (5, T) = leftu(TP(S; | 07,75 || 0)) & left (TP(S; || 0%, 7* || 07))]
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TPVP: Tweakable Permutation-Based Value Processing

sllo 810

TP TP

(N )

Let TP be an n-bit tweakable permutation with r-bit tweaks

Consider value comparison
. * * * ? * * *
O+ (.17) = [1efea(TP(S; || 07,75 || 0°)) £ left, (TP(S; | 07,7 | 07))]

TPVP gives leakage resilient value comparison

Same conditions on ¢, u apply
TPVP with secret permutation was used in Spook [BBB+19]

12/15



SuKS-then-PVP (StP)

My M,
0 < c n—s
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SuKS PVP

e Natural combination of SuKS and PVP
e Salt taken from keyless computation of SuKS

e Sufficiently random
® Non-secret to adversary
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SuKS-then-PVP (StP)

My M,
0 < c n—s
ﬂ L

SuKS PVP

Natural combination of SuKS and PVP
Salt taken from keyless computation of SuKS

e Sufficiently random
® Non-secret to adversary

® |eakage resilience of StP follows from that of SuKS and of PVP

Disadvantage of composition: independent primitives P and P’ needed
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Hash-then-Function-then-Function (HaFuFu)

H is hash function and F is secret random function

HaFuFu: uses same F for MAC and for verification

Salt taken from keyless computation of H

Leakage resilience of HaFuFu: as before, but dedicated proof needed
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Conclusion

Value Comparison
® Prominent role in tag verification
® Further applications in fault countermeasures
® Can be done efficiently by re-using existing resources

® Processed value comparison leads to slightly larger success probability

More in Paper
® Exact leakage resilience analysis
® Security assumptions

® Relaxation of salt

Thank you for your attention!
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