
Leakage Resilient Value Comparison
With Application to Message Authentication

Christoph Dobraunig1,2, Bart Mennink3

1: Lamarr Security Research (Austria)
2: Graz University of Technology (Austria)
3: Radboud University (The Netherlands)

EUROCRYPT 2021
October 2021

1 / 15



Black-Box Security and Side-Channel Attacks

A

ModeK

query response

• Cryptographic modes are usually analyzed in black-box setting

• However, evaluations may leak secret information
• Two main types of countermeasures:

• Protection at implementation-level: masking or hiding
• Protection at mode-level: leakage resilience

2 / 15



Black-Box Security and Side-Channel Attacks

A

ModeK

query response leakage

• Cryptographic modes are usually analyzed in black-box setting
• However, evaluations may leak secret information

• Two main types of countermeasures:
• Protection at implementation-level: masking or hiding
• Protection at mode-level: leakage resilience

2 / 15



Black-Box Security and Side-Channel Attacks

A

ModeK

query response leakage

• Cryptographic modes are usually analyzed in black-box setting
• However, evaluations may leak secret information
• Two main types of countermeasures:

• Protection at implementation-level: masking or hiding
• Protection at mode-level: leakage resilience

2 / 15



Example: Message Authentication (1/2)

FKS: Full-state Keyed Sponge (Simplified) [BDPV12,GPT15,MRV15]

P
n

K‖M1 M2

n

P P

T
t

M`

n. . .

n−t

• Very efficient
• No mode-level protection against side-channel attacks
• Requires implementation-level protection

3 / 15



Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

T
t

n−t

• Processes key at the end
• Minimizes number of evaluations of secret states
• Leakage resilient if G and P leak up to λ bits of secrecy (per evaluation)

How does SuKS verify tags?

4 / 15



Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

T
t

n−t

• Processes key at the end
• Minimizes number of evaluations of secret states
• Leakage resilient if G and P leak up to λ bits of secrecy (per evaluation)

How does SuKS verify tags?

4 / 15



Closer Look at SuKS

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

T
t

n−t

Tag Verification
• Given message/tag tuple (M,T ?):

• Compute T = SuKS(K,M)
• If T ? = T return 1, otherwise return 0

• Verification might leak information about T !

5 / 15



Closer Look at SuKS

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

T
t

n−t

Tag Verification
• Given message/tag tuple (M,T ?):

• Compute T = SuKS(K,M)
• If T ? = T return 1, otherwise return 0

• Verification might leak information about T !

5 / 15



Leakage from Value Comparison

• Leakage resilience usually centers around MAC/AE design
• Tag verification often left out of scope
• Assumed to be protected at implementation level

• But MAC design already uses protected primitive
• Why not re-use it for verification?

Formal analysis of leakage resilient value comparison

6 / 15



Leakage from Value Comparison

• Leakage resilience usually centers around MAC/AE design
• Tag verification often left out of scope
• Assumed to be protected at implementation level

• But MAC design already uses protected primitive
• Why not re-use it for verification?

Formal analysis of leakage resilient value comparison

6 / 15



Leakage from Value Comparison

• Leakage resilience usually centers around MAC/AE design
• Tag verification often left out of scope
• Assumed to be protected at implementation level

• But MAC design already uses protected primitive
• Why not re-use it for verification?

Formal analysis of leakage resilient value comparison

6 / 15



Modeling Value Comparison: Black-Box

• Plain target verification works:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Adversary making q queries
wins with probability at most q/2t

7 / 15

A

O

random t-bit targets
T1, . . . , Tµ

(wins if it receives a 1)

(j, T ?) 0/1



Modeling Value Comparison: Black-Box

• Plain target verification works:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Adversary making q queries
wins with probability at most q/2t

7 / 15

A

O

random t-bit targets
T1, . . . , Tµ

(wins if it receives a 1)

(j, T ?) 0/1



Modeling Value Comparison: Black-Box

• Plain target verification works:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Adversary making q queries
wins with probability at most q/2t

7 / 15

A

O

random t-bit targets
T1, . . . , Tµ

(wins if it receives a 1)

(j, T ?) 0/1



Modeling Value Comparison: Leaky Setting

• Adversary gains leakage per oracle evaluation

• Plain target verification fails:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Oracle might leak λ bits of Tj per query
• Tj is obtained after dt/λe queries

• A more sophisticated oracle O needed!

8 / 15

A

O

random t-bit targets
T1, . . . , Tµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



Modeling Value Comparison: Leaky Setting

• Adversary gains leakage per oracle evaluation

• Plain target verification fails:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Oracle might leak λ bits of Tj per query
• Tj is obtained after dt/λe queries

• A more sophisticated oracle O needed!

8 / 15

A

O

random t-bit targets
T1, . . . , Tµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



Modeling Value Comparison: Leaky Setting

• Adversary gains leakage per oracle evaluation

• Plain target verification fails:
O : (j, T ?) 7→

r
Tj

?
= T ?

z

• Oracle might leak λ bits of Tj per query
• Tj is obtained after dt/λe queries

• A more sophisticated oracle O needed!

8 / 15

A

O

random t-bit targets
T1, . . . , Tµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



Modeling Value Comparison: General Model

General Model
• µ random target values T1, . . . , Tµ
• µ salts S1, . . . , Sµ

• In principle unique
• Randomization or omission possible
• In applications, salts are often present

• O is some verification oracle
• Adversary A can make attempts (j, T ?) 7→ 0/1

• A also obtains leakage:
• Evaluation of cryptographic primitive within
O may leak λ bits (non-adaptively)

• Each value comparison may leak λ bits
(non-adaptively)

9 / 15

A

O

random t-bit targets
T1, . . . , Tµ

arbitrary s-bit salts
S1, . . . , Sµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



Modeling Value Comparison: General Model

General Model
• µ random target values T1, . . . , Tµ
• µ salts S1, . . . , Sµ

• In principle unique
• Randomization or omission possible
• In applications, salts are often present

• O is some verification oracle

• Adversary A can make attempts (j, T ?) 7→ 0/1

• A also obtains leakage:
• Evaluation of cryptographic primitive within
O may leak λ bits (non-adaptively)

• Each value comparison may leak λ bits
(non-adaptively)

9 / 15

A

O

random t-bit targets
T1, . . . , Tµ

arbitrary s-bit salts
S1, . . . , Sµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



Modeling Value Comparison: General Model

General Model
• µ random target values T1, . . . , Tµ
• µ salts S1, . . . , Sµ

• In principle unique
• Randomization or omission possible
• In applications, salts are often present

• O is some verification oracle
• Adversary A can make attempts (j, T ?) 7→ 0/1

• A also obtains leakage:
• Evaluation of cryptographic primitive within
O may leak λ bits (non-adaptively)

• Each value comparison may leak λ bits
(non-adaptively)

9 / 15

A

O

random t-bit targets
T1, . . . , Tµ

arbitrary s-bit salts
S1, . . . , Sµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



Modeling Value Comparison: General Model

General Model
• µ random target values T1, . . . , Tµ
• µ salts S1, . . . , Sµ

• In principle unique
• Randomization or omission possible
• In applications, salts are often present

• O is some verification oracle
• Adversary A can make attempts (j, T ?) 7→ 0/1

• A also obtains leakage:
• Evaluation of cryptographic primitive within
O may leak λ bits (non-adaptively)

• Each value comparison may leak λ bits
(non-adaptively)

9 / 15

A

O

random t-bit targets
T1, . . . , Tµ

arbitrary s-bit salts
S1, . . . , Sµ

(wins if it receives a 1)

(j, T ?)
0/1
leakage `



PVP: Permutation-Based Value Processing (1/2)

P

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P

s

n−s−t

t

u

n−u

S

0

T ?

V ?

• Let P be an n-bit permutation
• Consider value comparison

O : (j, T ?) 7→
r
leftu(P(Sj ‖ Tj ‖ 0∗))

?
= leftu(P(Sj ‖ T ? ‖ 0∗))

z

• PVP gives leakage resilient value comparison

10 / 15



PVP: Permutation-Based Value Processing (1/2)

P

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P

s

n−s−t

t

u

n−u

S

0

T ?

V ?

• Let P be an n-bit permutation
• Consider value comparison

O : (j, T ?) 7→
r
leftu(P(Sj ‖ Tj ‖ 0∗))

?
= leftu(P(Sj ‖ T ? ‖ 0∗))

z

• PVP gives leakage resilient value comparison

10 / 15



PVP: Permutation-Based Value Processing (2/2)

P

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P

s

n−s−t

t

u

n−u

S

0

T ?

V ?

• If P is a public permutation (e.g., Keccak-f):
• We require t, u� n, but typically n is large enough
• Similar to earlier suggestion of designers of ISAP [DEM+19]

• If P is a secret permutation (e.g., AESK):
• No limitation on t, u
• Better security bound but one needs protected AESK

11 / 15



PVP: Permutation-Based Value Processing (2/2)

P

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P

s

n−s−t

t

u

n−u

S

0

T ?

V ?

• If P is a public permutation (e.g., Keccak-f):
• We require t, u� n, but typically n is large enough
• Similar to earlier suggestion of designers of ISAP [DEM+19]

• If P is a secret permutation (e.g., AESK):
• No limitation on t, u
• Better security bound but one needs protected AESK

11 / 15



TPVP: Tweakable Permutation-Based Value Processing

TP

u

n−t n−u
0

t
T U

?
= U?

V
TP

n−t

tu

n−u
0

T ?

V ?

r

S‖0r−s
r

S‖0r−s

• Let TP be an n-bit tweakable permutation with r-bit tweaks
• Consider value comparison
O : (j, T ?) 7→

r
leftu(TP(Sj ‖ 0∗, Tj ‖ 0∗))

?
= leftu(TP(Sj ‖ 0∗, T ? ‖ 0∗))

z

• TPVP gives leakage resilient value comparison

• Same conditions on t, u apply
• TPVP with secret permutation was used in Spook [BBB+19]

12 / 15



TPVP: Tweakable Permutation-Based Value Processing

TP

u

n−t n−u
0

t
T U

?
= U?

V
TP

n−t

tu

n−u
0

T ?

V ?

r

S‖0r−s
r

S‖0r−s

• Let TP be an n-bit tweakable permutation with r-bit tweaks
• Consider value comparison
O : (j, T ?) 7→

r
leftu(TP(Sj ‖ 0∗, Tj ‖ 0∗))

?
= leftu(TP(Sj ‖ 0∗, T ? ‖ 0∗))

z

• TPVP gives leakage resilient value comparison

• Same conditions on t, u apply
• TPVP with secret permutation was used in Spook [BBB+19]

12 / 15



TPVP: Tweakable Permutation-Based Value Processing

TP

u

n−t n−u
0

t
T U

?
= U?

V
TP

n−t

tu

n−u
0

T ?

V ?

r

S‖0r−s
r

S‖0r−s

• Let TP be an n-bit tweakable permutation with r-bit tweaks
• Consider value comparison
O : (j, T ?) 7→

r
leftu(TP(Sj ‖ 0∗, Tj ‖ 0∗))

?
= leftu(TP(Sj ‖ 0∗, T ? ‖ 0∗))

z

• TPVP gives leakage resilient value comparison

• Same conditions on t, u apply
• TPVP with secret permutation was used in Spook [BBB+19]

12 / 15



SuKS-then-PVP (StP)

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

Q R W

P′

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P′

s

n−s−t

t

u

n−u

S

0

T ?

V ?

s s

t

n−t

︸ ︷︷ ︸
SuKS

︸ ︷︷ ︸
PVP

• Natural combination of SuKS and PVP
• Salt taken from keyless computation of SuKS

• Sufficiently random
• Non-secret to adversary

• Leakage resilience of StP follows from that of SuKS and of PVP
• Disadvantage of composition: independent primitives P and P′ needed

13 / 15



SuKS-then-PVP (StP)

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

Q R W

P′

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P′

s

n−s−t

t

u

n−u

S

0

T ?

V ?

s s

t

n−t

︸ ︷︷ ︸
SuKS

︸ ︷︷ ︸
PVP

• Natural combination of SuKS and PVP
• Salt taken from keyless computation of SuKS

• Sufficiently random
• Non-secret to adversary

• Leakage resilience of StP follows from that of SuKS and of PVP

• Disadvantage of composition: independent primitives P and P′ needed

13 / 15



SuKS-then-PVP (StP)

P

r

M1

c
0

M`

r

c

. . .

. . .

P

K

s

n−s

G
s

k

P

Q R W

P′

s u

n−s−t n−u

S

0

t
T

U
?
= U?

V
P′

s

n−s−t

t

u

n−u

S

0

T ?

V ?

s s

t

n−t

︸ ︷︷ ︸
SuKS

︸ ︷︷ ︸
PVP

• Natural combination of SuKS and PVP
• Salt taken from keyless computation of SuKS

• Sufficiently random
• Non-secret to adversary

• Leakage resilience of StP follows from that of SuKS and of PVP
• Disadvantage of composition: independent primitives P and P′ needed

13 / 15



Hash-then-Function-then-Function (HaFuFu)

M H F
T

F F
s+t

t

∗
t t

lefts

S
s

U
?
= U? t t

T ?
S

s

s

R

• H is hash function and F is secret random function
• HaFuFu: uses same F for MAC and for verification
• Salt taken from keyless computation of H
• Leakage resilience of HaFuFu: as before, but dedicated proof needed

14 / 15



Conclusion

Value Comparison
• Prominent role in tag verification
• Further applications in fault countermeasures
• Can be done efficiently by re-using existing resources
• Processed value comparison leads to slightly larger success probability

More in Paper
• Exact leakage resilience analysis
• Security assumptions
• Relaxation of salt

Thank you for your attention!
15 / 15


	Introduction
	Leakage Resilient Value Comparison
	Application
	Conclusion

