Leakage Resilient Value Comparison
With Application to Message Authentication

Christoph Dobraunig!?, Bart Mennink?

1. Lamarr Security Research (Austria)
2. Graz University of Technology (Austria)

3: Radboud University (The Netherlands)

N
(—
__,; EUROCRYPT 2021
October 2021
ESCADA croner

1/15

Black-Box Security and Side-Channel Attacks

Modeg

query

Jresponse

A

e Cryptographic modes are usually analyzed in black-box setting

2/15

Black-Box Security and Side-Channel Attacks

Modeg

query

~
N
AY
response 1leakage
1
4

A <"

e Cryptographic modes are usually analyzed in black-box setting

® However, evaluations may leak secret information

2/15

Black-Box Security and Side-Channel Attacks

Modeg

~
N

AY

query response 1leakage
1
4

A <"

e Cryptographic modes are usually analyzed in black-box setting
® However, evaluations may leak secret information

® Two main types of countermeasures:

® Protection at implementation-level: masking or hiding
® Protection at mode-level: leakage resilience

2/15

Example: Message Authentication (1/2)

FKS: Full-state Keyed Sponge (Simplified) [BDPV12,GPT15,MRV15]

KM, M, M,
L_H J‘L Pl J‘L

® No mode-level protection against side-channel attacks

e Very efficient

® Requires implementation-level protection

3/15

Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

My M,

® Processes key at the end
® Minimizes number of evaluations of secret states

® | eakage resilient if G and P leak up to A bits of secrecy (per evaluation)

4/15

Example: Message Authentication (2/2)

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

My M,

® Processes key at the end
® Minimizes number of evaluations of secret states

® | eakage resilient if G and P leak up to A bits of secrecy (per evaluation)

How does SuKS verify tags?

4/15

Closer Look at SuKS

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

M, M,

Tag Verification
¢ Given message/tag tuple (M, T™):
® Compute T = SuKS(K, M)
® |f T* =T return 1, otherwise return 0

5/15

Closer Look at SuKS

SuKS: Suffix Keyed Sponge [BDPV11,DEM+17,DM19]

M, M,

Tag Verification
¢ Given message/tag tuple (M, T™):
® Compute T = SuKS(K, M)
® |f T* =T return 1, otherwise return 0

e \erification might leak information about T

5/15

Leakage from Value Comparison

¢ |eakage resilience usually centers around MAC/AE design
e Tag verification often left out of scope

® Assumed to be protected at implementation level

6/15

Leakage from Value Comparison

Leakage resilience usually centers around MAC/AE design

Tag verification often left out of scope

Assumed to be protected at implementation level

But MAC design already uses protected primitive

Why not re-use it for verification?

6/15

Leakage from Value Comparison

Leakage resilience usually centers around MAC/AE design

Tag verification often left out of scope

Assumed to be protected at implementation level

But MAC design already uses protected primitive

Why not re-use it for verification?

Formal analysis of leakage resilient value comparison

6/15

Modeling Value Comparison

random t-bit targets
Ti,...,T,
I

1
Y

@

2 T*)‘ \0/ 1

A

(wins if it receives a 1)

- Black-Box

7/15

Modeling Value Comparison

random t-bit targets
Ti,...,T,
I

1
A4

@

2 T*)‘ \0/ 1

A

(wins if it receives a 1)

- Black-Box

® Plain target verification works:
0: (., 1)~ |1; £ 1]

7/15

Modeling Value Comparison: Black-Box

random t-bit targets
Ti,...,T,
I

1
A4

@

(U T*)‘ \0/ 1

A

(wins if it receives a 1)

® Plain target verification works:
O (5,T%) — [[TJ z T*H

e Adversary making ¢ queries
wins with probability at most ¢/2°

7/15

Modeling Value Comparison: Leaky Setting

random t-bit targets
Ti,...,T,

e Adversary gains leakage per oracle evaluation

1
A4

O

ol ot
T)‘ \Ie/akageé

A

(wins if it receives a 1)

8/15

Modeling Value Comparison: Leaky Setting

random t-bit targets
Ti,...,T,
I

1
A4

O

ol ot
T)‘ \Ie/akagef

A

(wins if it receives a 1)

e Adversary gains leakage per oracle evaluation

® Plain target verification fails:
0: (1)~ |1; £ 1]
® Oracle might leak X bits of T); per query
® T} is obtained after [t/\] queries

8/15

Modeling Value Comparison: Leaky Setting

random t-bit targets
Ti,...,T,
I

1
A4

@

ol ot
T)‘ \Ie/akageK

A

(wins if it receives a 1)

e Adversary gains leakage per oracle evaluation

® Plain target verification fails:
0: (1)~ |1; £ 1]
® Oracle might leak X bits of T); per query
® T} is obtained after [t/\] queries

® A more sophisticated oracle O needed!

8/15

Modeling Value Comparison: General Model

General Model

random ¢-bit targets ® 4 random target values 17, ..., T},
Ty,...,T,

A ® psalts Sp,...,5,
v ® |n principle unique

. . ® Randomization or omission possible

arbitrary s-bit salts e
SiyeesSy 77 O ® In applications, salts are often present
|

\
. ol ot
\\\ (4, T)‘ \Ieakage 4

~

g

(wins if it receives a 1)

9/15

Modeling Value Comparison: General Model

General Model

random ¢-bit targets ® 4 random target values 17, ..., T},
Ty,...,T,
b te ® psalts Sp,...,5,
v ® |n principle unique
. . ® Randomization or omission possible
arbitrary s-bit salts e

SiyeesSy 77 @) ® In applications, salts are often present

\ o1 e (O is some verification oracle

\ . *

\\\ (@ T%) leakage ¢

NN 1

(wins if it receives a 1)

9/15

Modeling Value Comparison: General Model

General Model

random ¢-bit targets ® 4 random target values 17, ..., T},
Ty,...,T,
b te ® psalts Sp,...,5,
v ® |n principle unique
arbitrary s-bit salts ® Randomization or omission possible
SiyeesSy 7T O ® In applications, salts are often present
\ o1 e (O is some verification oracle
\ . *
NS G T lleakage ¢ ® Adversary A can make attempts (j,7*) — 0/1

~

g

(wins if it receives a 1)

9/15

Modeling Value Comparison: General Model

random t-bit targets
Ti,...,T,
|

|
Y

arbitrary s-bit salts
— =
St .5, O

|

\

. ol ot
\\\ (4, T)] Jleakagef

~

g

(wins if it receives a 1)

General Model

1 random target values T, ...

psalts Si,...,S,
® |n principle unique

® Randomization or omission possible
® In applications, salts are often present

O is some verification oracle

Adversary A can make attempts (j,7*) — 0/1

A also obtains leakage:

® Evaluation of cryptographic primitive within
O may leak A bits (non-adaptively)
® Each value comparison may leak A bits

(non-adaptively)

Ty

9/15

PVP: Permutation-Based Value Processing (1/2)

® |et P be an n-bit permutation

e Consider value comparison

O: (. T%) = [leftu(P(S; | Ty | 0) = lefe (P(S; || 7* [07))]

10/15

PVP: Permutation-Based Value Processing (1/2)

S U=U* S
T — P P kT
RETEY _ n- —=t

® |et P be an n-bit permutation

e Consider value comparison
- * * ? * *
O (G.T7) = [lefea(P(S; 1| Ty 1 07)) £ leftu(P(S; 1| T[] 07))]

® PVP gives leakage resilient value comparison

10/15

PVP: Permutation-Based Value Processing (2/2)

ISR '
S U=U* S
T —+— P P kT
0 L=t - = —=—0
—/ —

e If P is a public permutation (e.g., Keccak-f):

® We require t,u < n, but typically n is large enough
® Similar to earlier suggestion of designers of ISAP [DEM+19]

11/15

PVP: Permutation-Based Value Processing (2/2)

ISR '
S U=U* S
T —+— P P kT
0 L=t - = —=—0
—/ —

e If P is a public permutation (e.g., Keccak-f):

® We require t,u < n, but typically n is large enough
® Similar to earlier suggestion of designers of ISAP [DEM+19]

e If P is a secret permutation (e.g., AESk):

® No limitation on ¢, u
® Better security bound but one needs protected AES

11/15

TPVP: Tweakable Permutation-Based Value Processing

sllo 810

TP TP

(N)

® Let TP be an n-bit tweakable permutation with r-bit tweaks

e Consider value comparison
. * * * ? * * *
O (5, T) = leftu(TP(S; | 07,75 || 0)) & left (TP(S; || 0%, 7* || 07))]

12/15

TPVP: Tweakable Permutation-Based Value Processing

T — U=U* — T
TP TP

0zt _ e LTI
—/ —

® Let TP be an n-bit tweakable permutation with r-bit tweaks

e Consider value comparison
. * * * ? * * *
O (5, T) = leftu(TP(S; | 07,75 || 0)) & left (TP(S; || 0%, 7* || 07))]

e TPVP gives leakage resilient value comparison

12/15

TPVP: Tweakable Permutation-Based Value Processing

sllo 810

TP TP

(N)

Let TP be an n-bit tweakable permutation with r-bit tweaks

Consider value comparison
. * * * ? * * *
O+ (.17) = [1efea(TP(S; || 07,75 || 0°)) £ left, (TP(S; | 07,7 | 07))]

TPVP gives leakage resilient value comparison

Same conditions on ¢, u apply
TPVP with secret permutation was used in Spook [BBB+19]

12/15

SuKS-then-PVP (StP)

My M,
0 < c n—s
ﬂ L

SuKS PVP

e Natural combination of SuKS and PVP
e Salt taken from keyless computation of SuKS

e Sufficiently random
® Non-secret to adversary

13/15

SuKS-then-PVP (StP)

My M,
0 < c n—s
ﬂ L

SuKS PVP

e Natural combination of SuKS and PVP
e Salt taken from keyless computation of SuKS

e Sufficiently random
® Non-secret to adversary

® |eakage resilience of StP follows from that of SuKS and of PVP

13/15

SuKS-then-PVP (StP)

My M,
0 < c n—s
ﬂ L

SuKS PVP

Natural combination of SuKS and PVP
Salt taken from keyless computation of SuKS

e Sufficiently random
® Non-secret to adversary

® |eakage resilience of StP follows from that of SuKS and of PVP

Disadvantage of composition: independent primitives P and P’ needed

13/15

Hash-then-Function-then-Function (HaFuFu)

H is hash function and F is secret random function

HaFuFu: uses same F for MAC and for verification

Salt taken from keyless computation of H

Leakage resilience of HaFuFu: as before, but dedicated proof needed

14/15

Conclusion

Value Comparison
® Prominent role in tag verification
® Further applications in fault countermeasures
® Can be done efficiently by re-using existing resources

® Processed value comparison leads to slightly larger success probability

More in Paper
® Exact leakage resilience analysis
® Security assumptions

® Relaxation of salt

Thank you for your attention!

15/15

	Introduction
	Leakage Resilient Value Comparison
	Application
	Conclusion

